These are from a textbook
1.
Consider the uniform distribution on [0,1]. Compute with proof.
\(\displaystyle \lim_{n\to {\infty}}P(\frac{1}{4}, \;\ 1-e^{-n})\)
2.
Suppose \(\displaystyle P(0, \;\ \frac{8}{4+n}) = \frac{2+e^{-n}}{6}, \;\ \forall \;\ n = 1,2,3...\)
What must P({0}) be?
1.
Consider the uniform distribution on [0,1]. Compute with proof.
\(\displaystyle \lim_{n\to {\infty}}P(\frac{1}{4}, \;\ 1-e^{-n})\)
2.
Suppose \(\displaystyle P(0, \;\ \frac{8}{4+n}) = \frac{2+e^{-n}}{6}, \;\ \forall \;\ n = 1,2,3...\)
What must P({0}) be?