The test page in question contains the following exercises:
Solve the following, using \(\displaystyle a\, =\, 3,\, b\, =\, 4, c\, =\, \frac{1}{3},\, d\, =\, \frac{1}{2},\, m\, =\, 6,\, \) and \(\displaystyle n\, =\, \frac{1}{4}\).
17. \(\displaystyle \displaystyle{\frac{\sqrt{b}\, +\, \sqrt{2d}}{2}\, -\, \frac{\sqrt{3c}\, +\, \sqrt{8d}}{4}}\)
18. \(\displaystyle \displaystyle{\frac{2\sqrt{a^2 b^2}}{3}\, +\, \frac{3\sqrt{2\, +\, d^2}}{4}\, -\, a\sqrt{n}}\)
Solve the following, using \(\displaystyle a\, =\, 2,\, b\, =\, \frac{1}{3}, x\, =\, -2,\, y\, =\, -1,\, m\, =\, 3,\, \) and \(\displaystyle n\, =\, \frac{1}{2}\).
16. \(\displaystyle \displaystyle{\frac{3a}{x}\, +\, \frac{2y}{m}\, +\, \frac{3n}{y}\, -\, \frac{m}{n}\, +\, 2\left(x^3\, -\, y^2\, +\, 4\right)}\)
Solve each system of equation
[sic]. Choose a different method every time you solve different set
[sic].
16. \(\displaystyle \displaystyle{\begin{cases}x\, =\, -\frac{3y\, +\, 3}{4}\\y\, =\, -\frac{1\, +\, 5x}{4}\end{cases}}\)
17. \(\displaystyle \displaystyle{\begin{cases}\frac{x\, +\, y}{6}\, =\, \frac{x\, -\, y}{12}\\\frac{2x}{3}\, =\, y\, +\, 3\end{cases}}\)
18. \(\displaystyle \displaystyle{\begin{cases}3x\, -\, \frac{y\, -\, 3}{5}\, =\, 6\\3y\, -\, \frac{x\, -\, 2}{7}\, =\, 9\end{cases}}\)
Yes, that's the numbering in the image.
