I am having trouble figuring out a solution to the attached exercise. I hope you can help me solve it. I am a first year college student. Any help will be greatly appreciated. Thank you!
\(\displaystyle M\, \subseteq\, M_3(\mathbb{C}),\, M\, \neq\, 0\)
\(\displaystyle \mbox{We know that:}\)
. . . . .\(\displaystyle \mbox{1) }\, A,\, B\, \in\, M\, \Rightarrow\, A\, +\, B\, \in\, M\)
. . . . .\(\displaystyle \mbox{2) }\, A\, \in\, M,\, C\, \in\, M_3\, \Rightarrow\, CA\, \in\, M\)
. . . . .\(\displaystyle \mbox{3) If }\, x\, \in\, M_{3,1}(\mathbb{C})\, \mbox{ and }\, Ax\, =\, 0\, \forall\, A\, \in\, M,\, \mbox{ then }\, x\, =\, 0\)
\(\displaystyle \mbox{Prove that }\, M\, =\, M_3(\mathbb{C}).\)