I need to "Express \(\displaystyle 2\cos ^2 \left( {\frac{x}{2}} \right)\) as a power series up to five terms using Maclaurins Theorum".
I know that \(\displaystyle \L \cos ^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x\)
so I figured that \(\displaystyle \L \cos ^2 \left( {\frac{x}{2}} \right) = \frac{1}{2} + \frac{1}{2}\cos x\)
and that \(\displaystyle \L 2\cos ^2 \frac{x}{2} = 1 + \cos x\)
Is this correct?
Also, are the first five terms
f(x) = 1 + cos(x) ................. f(0)=2
f'(x) = -sin(x) ..................... f(0)=0
f''(x) =-cos(x) .................... f(0)=-1
f'''(x) =sin(x) ..................... f(0)=0
f''''(x)=cos(x) ..................... f(0)=1
?
I know that \(\displaystyle \L \cos ^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x\)
so I figured that \(\displaystyle \L \cos ^2 \left( {\frac{x}{2}} \right) = \frac{1}{2} + \frac{1}{2}\cos x\)
and that \(\displaystyle \L 2\cos ^2 \frac{x}{2} = 1 + \cos x\)
Is this correct?
Also, are the first five terms
f(x) = 1 + cos(x) ................. f(0)=2
f'(x) = -sin(x) ..................... f(0)=0
f''(x) =-cos(x) .................... f(0)=-1
f'''(x) =sin(x) ..................... f(0)=0
f''''(x)=cos(x) ..................... f(0)=1
?