HELP with intagration by parts

T_TEngineer_AdamT_T

New member
Joined
Apr 15, 2007
Messages
24
Integrate this:
\(\displaystyle \L\\\int{\frac{x^3}{\sqrt{1-x^2}}dx\)

im getting confused with this problem
after integrating by parts:
\(\displaystyle \L\\\frac{x^4}{4\sqrt{1-x^2}}-\int{\frac{x^4}{4}(\frac{x}{(1-x^2)^{\frac{3}{2}}\)
thats where i got stuck

the answer at the back of my book should be:
\(\displaystyle \L\\-x^2\sqrt(1-x^2)-\frac{2}{3}(1-x^2)^{\frac{3}{2}}+C\)

Wahh w8 just figuring out how to use the latex here
 
T_TEngineer_AdamT_T said:
Integrate this:
\(\displaystyle \L\\\int{\frac{x^3}{\sqrt{1-x^2}}dx\)

im getting confused with this problem
after integrating by parts:
\(\displaystyle \L\\\frac{x^4}{4\sqrt{1-x^2}}-\int{\frac{x^4}{4}\left(\frac{x}{(1-x^2)^{\frac{3}{2}}\right)\)
thats where i got stuck

the answer at the back of my book should be:
\(\displaystyle \L\\-x^2\sqrt(1-x^2)-\frac{2}{3}(1-x^2)^{\frac{3}{2}}+C\)

Wahh w8 just figuring out how to use the latex here


Hello Adam. Get tired of the LaTex free MathHelpForum?.

On this site you must enclose in \(\displaystyle instead of Doyouhavetousepartsorcanyouuseanotheranyothermethod?. Do you have to use parts or can you use another any other method?.\)
 
Please edit your post so as to correct the LaTeX
If you type \(\displaystyle \L\:\int{\frac{x^3}{\sqrt{1-x^2}}dx \)

You will get \(\displaystyle \L\:\int{\frac{x^3}{\sqrt{1-x^2}}dx\)
 
Here are the parts: \(\displaystyle \L u = x^2 \quad \& \quad dv = \frac{{xdx}}{{\sqrt {1 - x^2 } }}.\)
 
Hello, T_TEngineer_AdamT_T!

\(\displaystyle \L \int \frac{x^3}{\sqrt{1-x^2}}dx\)

\(\displaystyle \begin{array}{ccccccc}u & \,=\, & x^2 & \;\;\; & dv & \,=\, & x(1\,-\,x^2)^{-\frac{1}{2}}dx \\
du & = & 2x\,dx & \;\;\; & v & = & -(1\,-\,x^2)^{\frac{1}{2}} \end{array}\)


We have: \(\displaystyle \L\:-x^2(1\,-\,x^2)^{\frac{1}{2}} \,-\,\int(1\,-\,x^2)^{\frac{1}{2}}(-2x\,dx)\)

. . \(\displaystyle \L= \;-x^2(1\,-\,x^2)^{\frac{1}{2}} \,- \,\frac{2}{3}(1\,-\,x^2)^{\frac{3}{2}} \,+\,C\)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I'm surprised that the answer was left like that.
. . Traditionally, textbooks simplify answers beyond all recognition.

Factor: \(\displaystyle \L\:-\frac{1}{3}(1\,-\,x^2)^{\frac{1}{2}}\,\left[3x^2\,+\,2(1\,-\,x^2)\right] \,+\,C\)

. . . .\(\displaystyle \L=\;-\frac{1}{3}(1\,-\,x^2)^{\frac{1}{2}}(x^2\,+\,2)\,+\,C\)

 
Top