phoenixwhiterose
New member
- Joined
- Sep 6, 2006
- Messages
- 9
Use rules of inference to show that if For all(P(x)vQ(x)) and For all ((notP(x)^Q(x))-->R(x)) are true, then For all((notR(x))-->P(x)) is also true, where the domains of all the quantifiers are the same.
So far all I have is:
1. For all(P(x)vQ(x)) premise
2. P(c)vQ(c) Universal instantiation line 1
3. For all ((notP(x)^Q(x))-->R(x)) premise
4. (((notP(c))^Q(c))-->R(c)) Universal instantiation line 3
Please help me if you can
So far all I have is:
1. For all(P(x)vQ(x)) premise
2. P(c)vQ(c) Universal instantiation line 1
3. For all ((notP(x)^Q(x))-->R(x)) premise
4. (((notP(c))^Q(c))-->R(c)) Universal instantiation line 3
Please help me if you can