help with calculus question please

stascand

New member
Joined
Sep 8, 2009
Messages
1
Find the derivitave of the function using the definition of derivative. State the domain of the function and the domain of its derivative.
f(x)=x+x^(1/2)
 
f(x) = x+x1/2, f  (x) = limh0f(x+h)f(x)h\displaystyle f(x) \ = \ x+x^{1/2}, \ f \ ' \ (x) \ = \ \lim_{h\to0}\frac{f(x+h)-f(x)}{h}

= limh0(x+h)+(x+h)1/2xx1/2h\displaystyle = \ \lim_{h\to0}\frac{(x+h)+(x+h)^{1/2}-x-x^{1/2}}{h}

= limh0(hx1/2)+(h+x)1/2h\displaystyle = \ \lim_{h\to0}\frac{(h-x^{1/2})+(h+x)^{1/2}}{h}

= limh0 (hx1/2)+(h+x)1/2h  (hx1/2)(h+x)1/2(hx1/2)(h+x)1/2\displaystyle = \ \lim_{h\to0} \ \frac{(h-x^{1/2})+(h+x)^{1/2}}{h} \ * \ \frac{(h-x^{1/2})-(h+x)^{1/2}}{(h-x^{1/2})-(h+x)^{1/2}}

= limh0 (hx1/2)2hxh[(hx1/2)(h+x)1/2]\displaystyle = \ \lim_{h\to0} \ \frac{(h-x^{1/2})^{2}-h-x}{h[(h-x^{1/2})-(h+x)^{1/2}]}

= limh0 h22hx1/2+xhxh[(hx1/2)(h+x)1/2]\displaystyle = \ \lim_{h\to0} \ \frac{h^{2}-2hx^{1/2}+x-h-x}{h[(h-x^{1/2})-(h+x)^{1/2}]}

= limh0 h[h2x1/21]h[(hx1/2)(h+x)1/2]\displaystyle = \ \lim_{h\to0} \ \frac{h[h-2x^{1/2}-1]}{h[(h-x^{1/2})-(h+x)^{1/2}]}

= limh0 h2x1/21(hx1/2)(h+x)1/2 = 2x1/21x1/2x1/2 = 2x1/2+12x1/2, QED\displaystyle = \ \lim_{h\to0} \ \frac{h-2x^{1/2}-1}{(h-x^{1/2})-(h+x)^{1/2}} \ = \ \frac{-2x^{1/2}-1}{-x^{1/2}-x^{1/2}} \ = \ \frac{2x^{1/2}+1}{2x^{1/2}}, \ QED

Now, domains and ranges.\displaystyle Now, \ domains \ and \ ranges.

f(x) = x+x1/2,hence x 0, therefore domain is [0,) and range is [0,).\displaystyle f(x) \ = \ x+x^{1/2}, hence \ x \ \ge 0, \ therefore \ domain \ is \ [0,\infty) \ and \ range \ is \ [0,\infty).

f  (x) = 2x+12x, hence x > 0, so domain is (0,) and range is (1,)\displaystyle f \ ' \ (x) \ = \ \frac{2 \sqrt x+1}{2 \sqrt x}, \ hence \ x \ > \ 0, \ so \ domain \ is \ (0,\infty) \ and \ range \ is \ (1,\infty)

Note: limx0+2x+12x =  and limx2x+12x = 1.\displaystyle Note: \ \lim_{x\to0^{+}}\frac{2 \sqrt x+1}{2\sqrt x} \ = \ \infty \ and \ \lim_{x\to\infty}\frac{2\sqrt x+1}{2\sqrt x} \ = \ 1.

See the graph below. Although not shown, x=0 is a vertical aysmptote and y=1 is a horizontal\displaystyle See \ the \ graph \ below. \ Although \ not \ shown, \ x=0 \ is \ a \ vertical \ aysmptote \ and \ y=1 \ is \ a \ horizontal

 aysmptote.\displaystyle \ aysmptote.

[attachment=0:mqqbw5pp]zzz.jpg[/attachment:mqqbw5pp]
 

Attachments

  • zzz.jpg
    zzz.jpg
    20 KB · Views: 64
Top