\(\displaystyle \L\ sin(nx) = n!sin(x)\sum_{k=0}^n \frac{(-1)^k cos^{n - 2k - 1}(x) sin^{2k}(x)}{(n - 2k - 1)!(2k + 1)!}\\\)
If we put n = 2, then:
\(\displaystyle \L\ sin(2x) = 2sin(x)cos(x)\)
\(\displaystyle \L\ 2cot(x)sin^2(x) = 2(\frac{cos(x)}{sin(x)}\)sin^2(x) = 2sin(x)cos(x)\), \(\displaystyle \L\ x \not=\ k\pi\\), \(\displaystyle \L\ k \in\ J\)
\(\displaystyle \L\ 1 - cos^2(x) = sin^2(x)\)