Help Please!!

cole123

New member
Joined
Mar 11, 2010
Messages
1
find the function f(x) the graph passes through (1,2) and whose tangent line at the point (x,F(x)) has a slope of 1/x^3
 
Hello, cole123!


We are given:   f(x)=x3\displaystyle \text{We are given: }\;f'(x) \:=\:x^{-3}

. . Hence: f(x)  =  12x2+C  =  12x2+C\displaystyle \text{Hence: }\:f(x) \;=\;-\frac{1}{2}x^{-2} + C \;=\;-\frac{1}{2x^2} + C


We are given:   f(1)=212(12)+C=2C=52\displaystyle \text{We are given: }\;f(1) \,=\,2 \quad\Rightarrow\quad -\frac{1}{2(1^2)} + C \:=\:2 \quad\Rightarrow\quad C \:=\:\frac{5}{2}


Therefore:   f(x)  =  12x2+52\displaystyle \text{Therefore: }\;\boxed{f(x) \;=\;-\frac{1}{2x^2} + \frac{5}{2}}

 
Top