help please!

G

Guest

Guest
Suzie walks at 4 mph and rows at 2 mph. She wishes to get from a point on the edge of a circular pond to a point directly opposite. She can row to any point and walk along the edge the rest of the way. Find the fastest route/time.
 
Hello, jackiemofo!

Suzie walks at 4 mph and rows at 2 mph.
She wishes to get from a point on the edge of a circular pond to a point directly opposite.
She can row to any point and walk along the edge the rest of the way.
Find the fastest route/time.
Code:
              * * *     P
          *           *
        *     x   * @/   *
       *      *     /R     *
          * @      / 2@
    A * - - - - - * - - - - * B
           R      O     R

The circular pond has center O\displaystyle O and radius R.\displaystyle R.

She rows from A\displaystyle A to P\displaystyle P at 2 mph, and walk from P\displaystyle P to B\displaystyle B at 4 mph.
. . Let x=AP.\displaystyle x = AP.

Let PAO=APO=θ\displaystyle \angle PAO = \angle APO = \theta
. . Then: .POB=2θ\displaystyle \angle POB = 2\theta

Using trig on ΔAOB\displaystyle \Delta AOB, we have: .x=2Rcosθ\displaystyle x \:=\:2R\cos\theta\, miles.

Rowing that far at 2 mph, it takes her:   T1=2Rcosθ2=Rcosθ hours.\displaystyle \text{Rowing that far at 2 mph, it takes her: }\;T_1 \:=\:\frac{2R\cos\theta}{2} \:=\:R\cos\theta\,\text{ hours.}


The length of arc PB is:   R(2θ)=2Rθ miles.\displaystyle \text{The length of arc }PB \text{ is: }\;R(2\theta) \,=\,2R\theta\,\text{ miles.}

Walking that far at 4 mph, it takes her:   T2  =  2Rθ4=12Rθ hours.\displaystyle \text{Walking that far at 4 mph, it takes her: }\;T_2 \;=\;\frac{2R\theta}{4} \:=\:\frac{1}{2}R\theta\,\text{ hours.}


Her total time is:   T  =  rcosθ+12Rθ\displaystyle \text{Her total time is: }\;T \;=\;r\cos\theta + \frac{1}{2}R\theta


And that is the function we must minimize.

 
Take any circular lake.\displaystyle Take \ any \ circular \ lake.

For sake of brevity, assume lake has a radius of 1 mile.\displaystyle For \ sake \ of \ brevity, \ assume\ lake \ has \ a \ radius \ of \ 1 \ mile.

Then diameter = 2 miles and half the circumference = π miles.\displaystyle Then \ diameter \ = \ 2 \ miles \ and \ half \ the \ circumference \ = \ \pi \ miles.

Now, if you can row 2 mph, it will take you 1 hour to row straight accross the lake,\displaystyle Now, \ if \ you \ can \ row \ 2 \ mph, \ it \ will \ take \ you \ 1 \ hour \ to \ row \ straight \ accross \ the \ lake,

but if you can walk 4 mph. it will take you only π4 = .785 hours to walk\displaystyle but \ if \ you \ can \ walk \ 4 \ mph. \ it \ will \ take \ you \ only \ \frac{\pi}{4} \ = \ .785 \ hours \ to \ walk

half the circumference of the lake.\displaystyle half \ the \ circumference \ of \ the \ lake.

Hence, the shortest time to get to the other side of the lake is πr4 hours and\displaystyle Hence, \ the \ shortest \ time \ to \ get \ to \ the \ other \ side \ of \ the \ lake \ is \ \frac{\pi r}{4} \ hours \ and

the fastest route is no rowing and just walking.\displaystyle the \ fastest \ route \ is \ no \ rowing \ and \ just \ walking.
 
Note: Observe that my answer jels with sorobans equation, to wit:\displaystyle Note: \ Observe \ that \ my \ answer \ jels \ with \ soroban's \ equation, \ to \ wit:

T(θ) = rcos(θ)+rθ2,  0  θ  π2\displaystyle T(\theta) \ = \ rcos(\theta)+\frac{r\theta}{2}, \ \ 0 \ \le \ \theta \ \le \ \frac{\pi}{2}

T(θ)= rsin(θ)+r2,      θ = π6\displaystyle T'(\theta) = \ -rsin(\theta)+\frac{r}{2}, \ \implies \ \theta \ = \ \frac{\pi}{6}

Ergo, T(0) = r, T(π6) = (63+π12)r = 1.1278r, and T(π2) = rπ4\displaystyle Ergo, \ T(0) \ = \ r, \ T\bigg(\frac{\pi}{6}\bigg) \ = \ \bigg(\frac{6\sqrt3+\pi}{12}\bigg)r \ = \ 1.1278r, \ and \ T\bigg(\frac{\pi}{2}\bigg) \ = \ \frac{r\pi}{4}

Hence, min. amt. of time occurs when T(θ) = rπ4 (Endpoint, walking, no rowing)\displaystyle Hence, \ min. \ amt. \ of \ time \ occurs \ when \ T(\theta) \ = \ \frac{r\pi}{4} \ (Endpoint, \ walking, \ no \ rowing)
 
Here is a way I done it. It is more complicated then Glenn and Sorobans method, but works nonetheless.

Just thought I would share.

Per the diagram, the time rowed can be found with the law of cosines.

2r2(1cosθ)2\displaystyle \frac{\sqrt{2r^{2}(1-cos{\theta})}}{2}

Then, the time walked is r(πθ)4\displaystyle \frac{r({\pi}-{\theta})}{4}

The total time is 2r2(1cosθ)2+r(πθ)4\displaystyle \frac{\sqrt{2r^{2}(1-cos{\theta})}}{2}+\frac{r({\pi}-{\theta})}{4}

Differentiating, we get 2rsinθr1cosθ=0\displaystyle \sqrt{2}\cdot r\cdot sin{\theta}-r\sqrt{1-cos{\theta}}=0

This is what is to be optimized in terms of theta. Getting θ=2π3\displaystyle {\theta}=\frac{2\pi}{3}

Which jives with the two previous solutions. I used a different theta angle. Also, @ is theta in the diagram.
 

Attachments

  • rowwalk.gif
    rowwalk.gif
    4 KB · Views: 131
Top