\(\displaystyle Note: \ Observe \ that \ my \ answer \ jels \ with \ soroban's \ equation, \ to \ wit:\)
\(\displaystyle T(\theta) \ = \ rcos(\theta)+\frac{r\theta}{2}, \ \ 0 \ \le \ \theta \ \le \ \frac{\pi}{2}\)
\(\displaystyle T'(\theta) = \ -rsin(\theta)+\frac{r}{2}, \ \implies \ \theta \ = \ \frac{\pi}{6}\)
\(\displaystyle Ergo, \ T(0) \ = \ r, \ T\bigg(\frac{\pi}{6}\bigg) \ = \ \bigg(\frac{6\sqrt3+\pi}{12}\bigg)r \ = \ 1.1278r, \ and \ T\bigg(\frac{\pi}{2}\bigg) \ = \ \frac{r\pi}{4}\)
\(\displaystyle Hence, \ min. \ amt. \ of \ time \ occurs \ when \ T(\theta) \ = \ \frac{r\pi}{4} \ (Endpoint, \ walking, \ no \ rowing)\)