1) A curve has equation y = (x^2) / (2x + 1)
. . .i) Find dy/dx.
. . . ..Hence, find the coordinates of the stationary
. . . ..points on the curve.
. . .ii) You are given that (d^2y)/(dx^2) = 2 / (2x + 1)^3
. . . . .Use this information to determine the nature
. . . . .of the stationary points in part (i).
. . .iii) Show that the substitution t = 2x + 1 converts
. . . .. .the integral int [ (x^2) / (2x + 1) ] dx to the
. . . .. .integral (1/8) int [ t + (1/t) - 2] dt
. . . .. .Hence, find the definite integral
. . . .. .int[x=0,1] [ (x^2) / (2x + 1) ] dx
Some help would be appreciated. Thank you.
_______________________
Edited by stapel -- Reason for edit: reformatting for size
. . .i) Find dy/dx.
. . . ..Hence, find the coordinates of the stationary
. . . ..points on the curve.
. . .ii) You are given that (d^2y)/(dx^2) = 2 / (2x + 1)^3
. . . . .Use this information to determine the nature
. . . . .of the stationary points in part (i).
. . .iii) Show that the substitution t = 2x + 1 converts
. . . .. .the integral int [ (x^2) / (2x + 1) ] dx to the
. . . .. .integral (1/8) int [ t + (1/t) - 2] dt
. . . .. .Hence, find the definite integral
. . . .. .int[x=0,1] [ (x^2) / (2x + 1) ] dx
Some help would be appreciated. Thank you.
_______________________
Edited by stapel -- Reason for edit: reformatting for size