Do you understand what the "canonical basis" is? The canonical basis for R4 consists of the vectors
[math]\begin{pmatrix}1 \\ 0 \\ 0 \\ 0 \end{pmatrix}[/math], [math]\begin{pmatrix}0 \\ 1 \\ 0 \\ 0 \end{pmatrix}[/math], [math]\begin{pmatrix}0 \\ 0 \\ 1 \\ 0 \end{pmatrix}[/math] and [math]\begin{pmatrix}0 \\ 0 \\ 0 \\ 1 \end{pmatrix}[/math].
Equivalently to what Romsek suggested, since A is from R4 to R4, it can be written as a 4 by 4 matrix, [math]A= \begin{pmatrix}a & b & c & d \\ e & f & g & h \\i & j & k & i \\ m & n & o & p\end{pmatrix}[/math].
Now, since A maps (x, y, z. t) to (y, x, z. t). it maps (1, 0, 0, 0) to (0, 1, 0, 0):
[math]\begin{pmatrix}a & b & c & d \\ e & f & g & h \\i & j & k & i \\ m & n & o & p\end{pmatrix}\begin{pmatrix}1 \\ 0 \\ 0 \\ 0 \end{pmatrix}= \begin{pmatrix} a \\ e \\ i \\ m\end{pmatrix}= \begin{pmatrix}0 \\ 1 \\ 0 \\ 0 \end{pmatrix}[/math] so that a= 0, e= 1, i= 0, and m= 0.
And
[math]\begin{pmatrix}a & b & c & d \\ e & f & g & h \\i & j & k & i \\ m & n & o & p\end{pmatrix}\begin{pmatrix}0 \\ 1 \\ 0 \\ 0 \end{pmatrix}= \begin{pmatrix} b \\ f\\ j \\ n\end{pmatrix}= \begin{pmatrix}1 \\ 0 \\ 0 \\ 0 \end{pmatrix}[/math] so that b= 1, f= 0, j= 0, and n= 0.