priyan thushara
New member
- Joined
- Dec 19, 2011
- Messages
- 2
1). let V be set of ordered pairs (a,b) of real numbers. show that V is not a vector space over R with addition and multiplication defined by
a) (a,b)+(c,d)=(a+d,b+c) and k(a,b)=(ka,kb)
b) (a,b)+(c,d)=(0,0) and k(a,b)=(ka,kb)
c) (a,b)+(c,d)=(ac,bd) and k(a,b)=(ka,kb)
2). let V be the vector space of n-square matrices over a field K. show that W is a subspace of V if W consist of all matrices A=[Aij] that are
a) symmetric (AT=A)
b) diagonal
a) (a,b)+(c,d)=(a+d,b+c) and k(a,b)=(ka,kb)
b) (a,b)+(c,d)=(0,0) and k(a,b)=(ka,kb)
c) (a,b)+(c,d)=(ac,bd) and k(a,b)=(ka,kb)
2). let V be the vector space of n-square matrices over a field K. show that W is a subspace of V if W consist of all matrices A=[Aij] that are
a) symmetric (AT=A)
b) diagonal