HELP - LIMITS - URGENT AP TEST TOMORROW

InterserveVB

New member
Joined
Sep 15, 2005
Messages
40
calc1.PNG


Can anyone explain how to do this problem? The answer is supposed to be 1.
 
ok, never mind


Cos (3pi / 2) = - sin (3pi/2) = 1
I was doing the D of the inside and it was causing it to 0 out.
 
Hello, InterserveVB!

\(\displaystyle \L\lim_{h\to0}\frac{\cos\left(\frac{3\pi}{2}\,+\,h\right)\,-\,\cos\left(\frac{3\pi}{2}\right)}{h}\)
The numerator is: \(\displaystyle \,\cos\left(\frac{3\pi}{2}\right)\cos(h) \,- \,\sin\left(\frac{3\pi}{2}\right)\sin(h) \,-\,\cos\left(\frac{3\pi}{2}\right)\)

. . . . . . . . . . . . \(\displaystyle = \;0\cdot\cos(h)\,-\,(-1)\sin(h) \,-\,0\;=\;\sin h\)

Then we have: \(\displaystyle \L\,\lim_{h\to0} \frac{\sin h}{h}\;=\;1\)
 
Top