Can anyone explain how to do this problem? The answer is supposed to be 1.
I InterserveVB New member Joined Sep 15, 2005 Messages 40 May 2, 2006 #1 Can anyone explain how to do this problem? The answer is supposed to be 1.
I InterserveVB New member Joined Sep 15, 2005 Messages 40 May 2, 2006 #2 ok, never mind Cos (3pi / 2) = - sin (3pi/2) = 1 I was doing the D of the inside and it was causing it to 0 out.
ok, never mind Cos (3pi / 2) = - sin (3pi/2) = 1 I was doing the D of the inside and it was causing it to 0 out.
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 May 2, 2006 #3 Hello, InterserveVB! \(\displaystyle \L\lim_{h\to0}\frac{\cos\left(\frac{3\pi}{2}\,+\,h\right)\,-\,\cos\left(\frac{3\pi}{2}\right)}{h}\) Click to expand... The numerator is: cos(3π2)cos(h) − sin(3π2)sin(h) − cos(3π2)\displaystyle \,\cos\left(\frac{3\pi}{2}\right)\cos(h) \,- \,\sin\left(\frac{3\pi}{2}\right)\sin(h) \,-\,\cos\left(\frac{3\pi}{2}\right)cos(23π)cos(h)−sin(23π)sin(h)−cos(23π) . . . . . . . . . . . . = 0⋅cos(h) − (−1)sin(h) − 0 = sinh\displaystyle = \;0\cdot\cos(h)\,-\,(-1)\sin(h) \,-\,0\;=\;\sin h=0⋅cos(h)−(−1)sin(h)−0=sinh Then we have: \(\displaystyle \L\,\lim_{h\to0} \frac{\sin h}{h}\;=\;1\)
Hello, InterserveVB! \(\displaystyle \L\lim_{h\to0}\frac{\cos\left(\frac{3\pi}{2}\,+\,h\right)\,-\,\cos\left(\frac{3\pi}{2}\right)}{h}\) Click to expand... The numerator is: cos(3π2)cos(h) − sin(3π2)sin(h) − cos(3π2)\displaystyle \,\cos\left(\frac{3\pi}{2}\right)\cos(h) \,- \,\sin\left(\frac{3\pi}{2}\right)\sin(h) \,-\,\cos\left(\frac{3\pi}{2}\right)cos(23π)cos(h)−sin(23π)sin(h)−cos(23π) . . . . . . . . . . . . = 0⋅cos(h) − (−1)sin(h) − 0 = sinh\displaystyle = \;0\cdot\cos(h)\,-\,(-1)\sin(h) \,-\,0\;=\;\sin h=0⋅cos(h)−(−1)sin(h)−0=sinh Then we have: \(\displaystyle \L\,\lim_{h\to0} \frac{\sin h}{h}\;=\;1\)