Help in natural deduction

searcher_

New member
Joined
Jun 30, 2021
Messages
4
I need help to solve the follow natural deduction => ∃x∀y ¬α(x, y) ➔ ¬∀x∃y α(x, y)



¬∀x∃y α(x, y) I ➔
∃x∀y ¬α(x, y) ➔ ¬∀x∃y α(x, y)

This is the two last lines...


I would like to understand step by step
 
I need help to solve the follow natural deduction => ∃x∀y ¬α(x, y) ➔ ¬∀x∃y α(x, y)

¬∀x∃y α(x, y) I ➔
∃x∀y ¬α(x, y) ➔ ¬∀x∃y α(x, y)

This is the two last lines...

I would like to understand step by step
This is the two last lines...
What does that mean?
 
Code:
        [∃x∀y ¬α(x, y)]                         [¬∀x∃y α(x, y)]          
                 ...                                      ...
           ¬∀x∃y α(x, y)                             ∃x∀y ¬α(x, y)
___________________________________I➔    ___________________________________I➔
    ∃x∀y ¬α(x, y) ➔ ¬∀x∃y α(x, y)          ¬∀x∃y α(x, y) ➔ ∃x∀y ¬α(x, y)
____________________________________________________________________________I↔
                        ∃x∀y ¬α(x, y) ↔ ¬∀x∃y α(x, y)
 
Code:
 [∃x∀y ¬α(x, y)]                         [¬∀x∃y α(x, y)]          
                 ...                                      ...
           ¬∀x∃y α(x, y)                             ∃x∀y ¬α(x, y)
___________________________________I➔    ___________________________________I➔
    ∃x∀y ¬α(x, y) ➔ ¬∀x∃y α(x, y)          ¬∀x∃y α(x, y) ➔ ∃x∀y ¬α(x, y)
____________________________________________________________________________I↔
                        ∃x∀y ¬α(x, y) ↔ ¬∀x∃y α(x, y)

just the last lines of natural deduction to explain the format
 
Top