\(\displaystyle f(x) \ = \ \frac{x^{3}}{(x-2)^{2}}, \ f(0) \ = \ 0.\)
\(\displaystyle f^{1}(x) \ = \ \frac{x^{2}(x-6)}{(x-2)^{3}}, \ f^{1}(0) \ = \ 0.\)
\(\displaystyle f^{2}(x) \ = \ \frac{24x}{(x-2)^{4}}, \ f^{2}(0) \ = \ 0.\)
\(\displaystyle f^{3}(x) \ = \ \frac{-24(3x+2)}{(x-2)^{5}}, \ f^{3}(0) \ = \ \frac{3}{2}.\)
\(\displaystyle f^{4}(x) \ = \ \frac{96(3x+4)}{(x-2)^{6}}, \ f^{4}(0) \ = \ 6.\)
\(\displaystyle f^{5}(x) \ = \ \frac{-1440(x+2)}{(x-2)^{7}}, \ f^{5}(0) \ = \ \frac{45}{2}.\)
\(\displaystyle f^{6}(x) \ = \ \frac{2880(3x+8)}{(x-2)^{8}}, \ f^{6}(0) \ = \ 90.\)
\(\displaystyle f^{7}(x) \ = \ \frac{-20160(3x+10)}{(x-2)^{9}}. \ f^{7}(0) \ = \ \frac{1575}{4}.\)
\(\displaystyle f^{8}(x) \ = \ \frac{483840(x+4)}{(x-2)^{10}}, \ f^{8}(0) \ = \ 1890.\)
\(\displaystyle f^{9}(x) \ = \ \frac{-1451520(3x+14)}{(x-2)^{11}}, \ f^{9}(0) \ = \ \frac{19845}{2}.\)
\(\displaystyle f^{10}(x) \ = \ \frac{14515200(3x+16)}{(x-2)^{12}}, \ f^{10}(0) \ = \ 56700.\)
Definition of a Maclaurin polynomial:
\(\displaystyle P_n(x) \ = \ f(0)+f^{1}(0)x+\frac{f^{2}(0)x^{2}}{2!}+\frac{f^{3}(0)x^{3}}{3!}+...+\frac{f^{n}(0)x^{n}}{n!}.\)
\(\displaystyle Hence, \ P_{10}(x) \ = \ 0+0+0+\frac{x^{3}}{4}+\frac{x^{4}}{4}+\frac{3x^{5}}{16}+\frac{x^{6}}{8}+\frac{5x^{7}}{64}+\frac{3x^{8}}{64}+\frac{7x^{9}}{256}+\frac{x^{10}}{64}.\)
\(\displaystyle Revising, \ we \ get: \ P_{10}(x) \ = \ \frac{x^{3}+x^{4}}{2^{2}}+\frac{3x^{5}+2x^{6}}{2^{4}}+\frac{5x^{7}+3x^{8}}{2^{6}}+\frac{7x^{9}+4x^{10}}{2^{8}}\)
Ergo, we have a pattern, therefore;
\(\displaystyle \frac{x^{3}}{(x-2)^{2}} \ = \ \sum_{n=0}^{\infty}\frac{(2n+1)x^{2n+3}+(n+1)x^{2n+4}}{2^{2n+2}}\)
Note: converges on (-2,2).
Also note: all this protractedness could have been avoided by using my trusty TI-89 for Taylor series.(F3-9)