A hard boiled egg at \(\displaystyle 97^{o} C\) is put in a sink of \(\displaystyle 17^{o} C\)water. After 5 min, the egg's temperature is \(\displaystyle 37^{o} C\) Assuming that the water has not warmed appreciably, how much longer will it take the egg to reach \(\displaystyle 19^{o} C\)?
\(\displaystyle H - H_{S} = (H_{0} - H_{S})e^{-kt}\)
\(\displaystyle H = H_{S} + (H_{0} - H_{S})e^{-kt}\)
\(\displaystyle H = (17) + ((97) - (17))e^{-kt}\)
\(\displaystyle H = (17) + (80)e^{-kt}\)
find k
\(\displaystyle 37 = (17) + (80)e^{-k(5)}\)
\(\displaystyle 20 = (80)e^{-k(5)}\)
\(\displaystyle \dfrac{1}{4} = e^{-k(5)}\)
\(\displaystyle \ln(\dfrac{1}{4}) = \ln(e^{-k(5)})\)
\(\displaystyle -1.386294361 = -k(5)\)
\(\displaystyle k = 0.277258872\)
\(\displaystyle 19 = (17) + (80)e^{-(0.277258872)(t)}\)
\(\displaystyle 2 = (80)e^{-(0.277258872)(t)}\)
\(\displaystyle \dfrac{1}{4} = e^{-(0.277258872)(t)}\)
\(\displaystyle \ln[\dfrac{1}{4}] = \ln[e^{-(0.277258872)(t)}]\)
\(\displaystyle -1.386294361 = -(0.277258872)(t)\)
\(\displaystyle t = 0.199999999\)
This doesn't look right.
\(\displaystyle H - H_{S} = (H_{0} - H_{S})e^{-kt}\)
\(\displaystyle H = H_{S} + (H_{0} - H_{S})e^{-kt}\)
\(\displaystyle H = (17) + ((97) - (17))e^{-kt}\)
\(\displaystyle H = (17) + (80)e^{-kt}\)
find k
\(\displaystyle 37 = (17) + (80)e^{-k(5)}\)
\(\displaystyle 20 = (80)e^{-k(5)}\)
\(\displaystyle \dfrac{1}{4} = e^{-k(5)}\)
\(\displaystyle \ln(\dfrac{1}{4}) = \ln(e^{-k(5)})\)
\(\displaystyle -1.386294361 = -k(5)\)
\(\displaystyle k = 0.277258872\)
\(\displaystyle 19 = (17) + (80)e^{-(0.277258872)(t)}\)
\(\displaystyle 2 = (80)e^{-(0.277258872)(t)}\)
\(\displaystyle \dfrac{1}{4} = e^{-(0.277258872)(t)}\)
\(\displaystyle \ln[\dfrac{1}{4}] = \ln[e^{-(0.277258872)(t)}]\)
\(\displaystyle -1.386294361 = -(0.277258872)(t)\)
\(\displaystyle t = 0.199999999\)
Last edited: