having trouble understanding the concept to solve tehse kind

spacewater

Junior Member
Joined
Jul 10, 2009
Messages
67
problem
(x+y)3x3h\displaystyle \frac{(x+y)^3-x^3}{h}

(x+yx)(x2xy+y2+x2)y\displaystyle \frac{(x+y-x)(x^2-xy+y^2+x^2)}{y}

(y)(2x2xy+y2)y\displaystyle \frac{(y)(2x^2-xy+y^2)}{y}

final answer
(2x2xy+y2)\displaystyle (2x^2-xy+y^2)



problem 2
1(x+h)21x2h\displaystyle \frac{\frac{1}{(x+h)^2}-\frac{1}{x^2}}{h}

steps
1x2+2xh+h22xh+h2+1x2+2xh+h2h\displaystyle \frac{\frac{1}{x^2+2xh+h^2}-\frac{2xh+h^2+1}{x^2+2xh+h^2}}{h}

()2xhh2x2+2xh+h21h\displaystyle (-)\frac{2xh-h^2}{x^2+2xh+h^2} \cdot \frac{1}{h}

final answer
()h(2xh)x2h+2xh2+h3\displaystyle (-)\frac{h(2x-h)}{x^2h+2xh^2+h^3}

Can someone who isnt too busy tell me what i did wrong along the steps?
 
Re: correct answer to this problem?

spacewater said:
problem
(x+y)3x3h\displaystyle \frac{(x+y)^3-x^3}{h}

(x+yx)(x2xy+y2+x2)y\displaystyle \frac{(x+y-x)(x^2-xy+y^2+x^2)}{y} .... you are almost correct - not quiet

a[sup:1o3hxlf8]3[/sup:1o3hxlf8] - b[sup:1o3hxlf8]3[/sup:1o3hxlf8] = (a - b)(a[sup:1o3hxlf8]2[/sup:1o3hxlf8] + ab + b[sup:1o3hxlf8]2[/sup:1o3hxlf8])

(x+y)[sup:1o3hxlf8]3[/sup:1o3hxlf8] - x[sup:1o3hxlf8]3[/sup:1o3hxlf8] = (x+y - x)[(x+y)[sup:1o3hxlf8]2[/sup:1o3hxlf8] + x(x+y) + x[sup:1o3hxlf8]2[/sup:1o3hxlf8]]



(y)(2x2xy+y2)y\displaystyle \frac{(y)(2x^2-xy+y^2)}{y}

final answer
(2x2xy+y2)\displaystyle (2x^2-xy+y^2)
 
spacewater said:
problem 2
1(x+h)21x2h\displaystyle \frac{\frac{1}{(x+h)^2}-\frac{1}{x^2}}{h}
Here is a suggestion. Rid the problem of so many fractions first.
1(x+h)21x2h=x2(x+h)2x2h(x+h)2\displaystyle \frac{\frac{1}{(x+h)^2}-\frac{1}{x^2}}{h}=\frac{x^2 -(x+h)^2}{x^2 h(x+h)^2}
 
Re: correct answer to this problem?

Subhotosh Khan said:
spacewater said:
problem
(x+y)3x3h\displaystyle \frac{(x+y)^3-x^3}{h}

(x+yx)(x2xy+y2+x2)y\displaystyle \frac{(x+y-x)(x^2-xy+y^2+x^2)}{y} .... you are almost correct - not quiet

a[sup:3kcr3w7h]3[/sup:3kcr3w7h] - b[sup:3kcr3w7h]3[/sup:3kcr3w7h] = (a - b)(a[sup:3kcr3w7h]2[/sup:3kcr3w7h] + ab + b[sup:3kcr3w7h]2[/sup:3kcr3w7h])

(x+y)[sup:3kcr3w7h]3[/sup:3kcr3w7h] - x[sup:3kcr3w7h]3[/sup:3kcr3w7h] = (x+y - x)[(x+y)[sup:3kcr3w7h]2[/sup:3kcr3w7h] + x(x+y) + x[sup:3kcr3w7h]2[/sup:3kcr3w7h]]



(y)(2x2xy+y2)y\displaystyle \frac{(y)(2x^2-xy+y^2)}{y}

final answer
(2x2xy+y2)\displaystyle (2x^2-xy+y^2)

y(x2+2xy+y2+x2+xy+x2)y\displaystyle \frac {y(x^2+2xy+y^2+x^2+xy+x^2)}{y}

the final answer would be

3x2+3xy+y2\displaystyle 3x^2+3xy+y^2
 

I don't understand how you got x^2 - (x+h)^2 for the numerator. Can you elaborate this to me in more detail if you are not too busy
 
spacewater said:
problem 2
1(x+h)21x2h\displaystyle \frac{\frac{1}{(x+h)^2}-\frac{1}{x^2}}{h}

steps
1x2+2xh+h22xh+h2+1x2+2xh+h2h\displaystyle \frac{\frac{1}{x^2+2xh+h^2}-\frac{2xh+h^2+1}{x^2+2xh+h^2}}{h} <<<<<<incorrect

()2xhh2x2+2xh+h21h\displaystyle (-)\frac{2xh-h^2}{x^2+2xh+h^2} \cdot \frac{1}{h}

final answer
()h(2xh)x2h+2xh2+h3\displaystyle (-)\frac{h(2x-h)}{x^2h+2xh^2+h^3} <<<<<<incorrect
______________________________________________________________________

1(x+h)21x2h\displaystyle \frac{\frac{1}{(x+h)^2}-\frac{1}{x^2}}{h}

=(1x+h+1x)(1x+h1x)h\displaystyle = \frac{ (\frac {1}{x+h} + \frac{1}{x})\cdot (\frac {1}{x+h} - \frac{1}{x})}{h}

=(2x+hx(x+h))(hx(x+h))h\displaystyle = \frac{(\frac {2x + h}{x\cdot (x+h)})\cdot (-\frac {h}{x\cdot (x+h)})}{h}

=2x+hx2(x+h)2\displaystyle = -\frac {2x + h}{x^2\cdot (x+h)^2}

Can someone who isnt too busy tell me what i did wrong along the steps?
 
spacewater said:

I don't understand how you got x^2 - (x+h)^2 for the numerator. Can you elaborate this to me in more detail if you are not too busy
You do not understand how to handle complex fractions??
abcdh=adbcbdh\displaystyle \frac{{\frac{a}{b} - \frac{c}{d}}}{h} = \frac{{ad - bc}}{{bdh}}
 
spacewater said:

I don't understand how you got x^2 - (x+h)^2 for the numerator.

Multiply numerator and the denomiator by x[sup:2afp49ea]2[/sup:2afp49ea](x+h)[sup:2afp49ea]2[/sup:2afp49ea]
--- the LCD --- this is a standard method for "getting rid" of fractions




Can you elaborate this to me in more detail if you are not too busy
 
Top