\(\displaystyle \L\ (x^3 + 5x^2)^{\frac{1}{3}} - x = x[(1 + \frac{5}{x}\)^{\frac{1}{3}} - 1]\)
Now, Soroban, above, explained the following step:
Multiply it by \(\displaystyle \L\ \frac{(1 + \frac{5}{x}\)^{\frac{2}{3}} + (1 + \frac{5}{x}\)^{\frac{1}{3}} + 1}{(1 + \frac{5}{x}\)^{\frac{2}{3}} + (1 + \frac{5}{x}\)^{\frac{1}{3}} + 1}\\)
So \(\displaystyle \L\ x[(1 + \frac{5}{x}\)^{\frac{1}{3}} - 1]\) becomes:
\(\displaystyle \L\ \frac{5}{(1 + \frac{5}{x}\)^{\frac{2}{3}} + (1 + \frac{5}{x}\}^{\frac{1}{3}} + 1}\\)
...by the difference of cubes rule. The limit can now be evaluated.