\(\displaystyle a\text{ and }b\text{ are constants such that: }a < b.\)
\(\displaystyle \text{Find the value of: }\;\int^b_a \frac{dx}{\sqrt{(x - a)(b - x)}}\)
The answer is \(\displaystyle \pi\)
soroban said:
\(\displaystyle \text{The integral becomes: }\;\int^b_a\frac{dx}{\sqrt{ (\frac{a-b}{2} )^2 - (x - \frac{a+b}{2} )^2}}\)