Green Function - 2

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,576
Solve.

u+1xu1x2u=x,   u(2)=1,   u(2)=3\displaystyle u'' + \frac{1}{x}u' - \frac{1}{x^2}u = x, \ \ \ u(2) = 1, \ \ \ u'(2) = -3
 
From the previous exercise, we know that the general solution to this type of differential equation is:

u(x)=c1x+c2x+2xx2s22xs ds\displaystyle u(x) = c_1x + \frac{c_2}{x} + \int_{2}^{x}\frac{x^2 - s^2}{2x}s \ ds

The main idea is to find the green function one time for a specific type of differential equation and then use it to solve all the differential equations of the same type. The most beautiful thing about green function is that it does not care much if the forcing function f(x)\displaystyle f(x) or the conditions are changed.

The green function for this type of differential equation is always g(x,s)=x2s22x\displaystyle g(x,s) = \frac{x^2 - s^2}{2x}.

💪😎
 
If we solve this Euler's differential equation by WolframAlpha\displaystyle \text{WolframAlpha}, we get:

u(x)=x389x4+9x\displaystyle u(x) = \frac{x^3}{8} - \frac{9x}{4} + \frac{9}{x}

Let us solve it by green function and see if we can get the same result!😍
 
Applying the initial conditions, we find that:

c1=54  \displaystyle c_1 = -\frac{5}{4} \ \ and   c2=7\displaystyle \ \ c_2 = 7

Then,

u(x)=5x4+7x+2xx2s22xs ds\displaystyle u(x) = -\frac{5x}{4} + \frac{7}{x} + \int_{2}^{x}\frac{x^2 - s^2}{2x}s \ ds
 
Let us try to solve this integral.

2xx2s22xs ds=x22xs ds12x2xs3 ds=x2s222x12xs442x\displaystyle \int_{2}^{x}\frac{x^2 - s^2}{2x}s \ ds = \frac{x}{2}\int_{2}^{x}s \ ds - \frac{1}{2x}\int_{2}^{x} s^3 \ ds = \frac{x}{2}\frac{s^2}{2}\bigg|_{2}^{x} - \frac{1}{2x}\frac{s^4}{4}\bigg|_{2}^{x}


=x2(x22222)12x(x44244)\displaystyle =\frac{x}{2}\left(\frac{x^2}{2} - \frac{2^2}{2}\right) - \frac{1}{2x}\left(\frac{x^4}{4} - \frac{2^4}{4}\right)


=x2(x222)12x(x444)\displaystyle =\frac{x}{2}\left(\frac{x^2}{2} - 2\right) - \frac{1}{2x}\left(\frac{x^4}{4} - 4\right)


=(x34x)(x382x)\displaystyle =\left(\frac{x^3}{4} - x\right) - \left(\frac{x^3}{8} - \frac{2}{x}\right)


=x34xx38+2x\displaystyle = \frac{x^3}{4} - x - \frac{x^3}{8} + \frac{2}{x}


=x38x+2x\displaystyle = \frac{x^3}{8} - x + \frac{2}{x}
 
u(x)=5x4+7x+2xx2s22xs ds\displaystyle u(x) = -\frac{5x}{4} + \frac{7}{x} + \int_{2}^{x}\frac{x^2 - s^2}{2x}s \ ds
Substitute the result back to the solution.

u(x)=5x4+7x+x38x+2x\displaystyle u(x) = -\frac{5x}{4} + \frac{7}{x} + \frac{x^3}{8} - x + \frac{2}{x}

Simplify.

u(x)=5x4+9x+x384x4\displaystyle u(x) = -\frac{5x}{4} + \frac{9}{x} + \frac{x^3}{8} - \frac{4x}{4}


=9x4+9x+x38\displaystyle = -\frac{9x}{4} + \frac{9}{x} + \frac{x^3}{8}

How to check if our solution is correct?

🤔
It matches the solution of WolframAlpha\displaystyle \text{WolframAlpha}. This is one way to check that we have the correct green function.

💪:alien:👽 \displaystyle \rightarrow this is the beauty of chess!
 
Top