Hello, maeveoneill!
For the function \(\displaystyle f(x)\:=\:\frac{x^3\,+\,16}{x}\) find the critical points
. . . and points of inflection, intervals of increase/decrease
\(\displaystyle \text{We have: }\,f(x)\:=\:\L\frac{x^3\,+\,16}{x}\)\(\displaystyle \:=\:x^2\,+\,16x^{^{-1}}\)
\(\displaystyle \text{Then: }\,f'(x)\:=\:2x\,-\,16x^{-2}\) . . . \(\displaystyle \text{and: }\,f''(x)\:=\:2\,+\,32x^{^{-2}}\)
Critical points: \(\displaystyle \,f'(x)\,=\,0\;\;\Rightarrow\;\;2x\,-\,\frac{16}{x^2}\:=\:0\;\;\Rightarrow\;\;2x^3\,=\,16\;\;\Rightarrow\;\;x\,=\,2\)
There is <u>one</u> critical point: \(\displaystyle \,(2,\,12)\)
There is a discontinuity at \(\displaystyle x\,=\,0\) which must be investigated.
\(\displaystyle \;\;\)On \(\displaystyle (-\infty,\,0):\;f'(x)\) is negative: \(\displaystyle \searrow\)
\(\displaystyle \;\;\)On \(\displaystyle (0,\,2):\;\;f'(x)\) is negative: \(\displaystyle \searrow\)
\(\displaystyle \;\;\)On \(\displaystyle (2,\,\infty):\;f'(x)\) is positive: \(\displaystyle \nearrow\)
\(\displaystyle f(x)\) is decreasing on: \(\displaystyle (-\infty,\,0)\,\cup\,(0,\,2)\)
\(\displaystyle f(x)\) is increasing on: \(\displaystyle (2,\,\infty)\)
Inflection points: \(\displaystyle \,f"(x)\,=\,0\;\;\Rightarrow\;\;2\,+\,\frac{32}{x^3}\:=\:0\;\;\Rightarrow\;\;x\,=\,-\sqrt[3]{16}\)
There is one inflection point: \(\displaystyle \,(-\sqrt[3]{16},\,0)\)
On \(\displaystyle (-\infty,\,-\sqrt[3]{16}):\;f"(x)\) is positive: \(\displaystyle \cup\)
On \(\displaystyle (-\sqrt[3]{16},\,0):\;f"(x)\) is negative: \(\displaystyle \cap\)
On \(\displaystyle (0,\,\infty):\;f"(x)\) is positive: \(\displaystyle \cup\)[/tex]
I think the graph looks like this:
Code:
|* *
| *
+ * *
* + **
+
* +
----*-------+---------------
* +
* +
|
*|
|