Given that A#B#C=2A-3B+5C, what is the value of 3#(-2)#4?

ffarg

New member
Joined
Mar 5, 2007
Messages
1
Given that A#B#C=2A-3B+5C, what is the value of 3#(-2)#4?

What do I do with the "#" symbol?
 
Re: What do I do with the "#"?

Hello, ffarg!

It's an exercise in "translating" . . .


Given that: A#B#C=2A3B+5C\displaystyle \:A\,\#\,B\,\#\,C \:=\: 2A\,-\,3B\,+\,5C,
what is the value of 3#(2)#4\displaystyle 3\,\#\,(-2)\,\#\,4 ?

They told us that A#B#C\displaystyle A\,\#\,B\,\#\,C means:
. . "2 times the first number, minus 3 times the second, plus 4 times the third".

So 3#(2)#4\displaystyle \,3\,\#\,(-2)\,\#\,4 means: 2(3)3(2)+4(4)  =  6+6+16  =  28\displaystyle \:2(3)\,-\,3(-2)\,+\,4(4)\;=\;6\,+\,6\,+\,16\;=\;28

 
ffarg said:
What do I do with the "#" symbol?
Slightly off-topic: The "#" symbol is often pronounced "shuh-BANG".

Eliz.
 
Top