Given sin(u)=3/5, sin(v)=4/5, u and v between 0 and pi/2,

goldenfuture5

New member
Joined
Feb 20, 2009
Messages
4
Given sin(u)=3/5, sin(v)=4/5, u and v lie between 0 and pi/2... Find cos(u-v)

Confused, need answer and some work. THanks!
 
Hello, goldenfuture5!

Given: sin(u)=35,  sin(v)=45,u and v lie between 0 and π2\displaystyle \text{Given: }\:\sin(u)=\tfrac{3}{5},\;\sin(v)=\tfrac{4}{5},\:u\text{ and }v\text{ lie between 0 and }\tfrac{\pi}{2}

. . Find cos(uv)\displaystyle \text{Find }\:\cos(u-v)

We’re expected to know that:   cos(uv)  =  cos(u)cos(v)+sin(u)sin(v)    [1]\displaystyle \text{We're expected to know that: }\;\cos(u-v) \;=\;\cos(u)\cos(v) + \sin(u)\sin(v)\;\;[1]

We know the values of sin(u) and sin(v).\displaystyle \text{We know the values of }\sin(u)\text{ and }\sin(v).
. . We must find the values of cos(u) and cos(v).\displaystyle \text{We must find the values of }\cos(u)\text{ and }\cos(v).


Since sin(u)=35=opphyp\displaystyle \text{Since }\,\sin(u) \:=\:\tfrac{3}{5} \:=\:\tfrac{opp}{hyp}
. . u is an angle in Quadrant 1 with: opp=3,hyp=5.\displaystyle u\text{ is an angle in Quadrant 1 with: }opp = 3,\:hyp = 5.

Using Pythagorus, we find that: adj=4\displaystyle \text{Using Pythagorus, we find that: }\:adj = 4
. . Hence:   cos(u)=adjhypcos(u)=45\displaystyle \text{Hence: }\;\cos(u) \:=\:\tfrac{adj}{hyp} \quad\Rightarrow\quad \cos(u) \:=\:\tfrac{4}{5}

Similarly: sin(v)=45cos(v)=35\displaystyle \text{Similarly: }\:\sin(v) \:=\:\tfrac{4}{5} \quad\Rightarrow\quad \cos(v) \:=\:\tfrac{3}{5}


Substitute into [1]:  cos(uv)  =  (45)(35)+(35)(45)  =  1225+1225  =  2425\displaystyle \text{Substitute into [1]:}\;\cos(u-v) \;=\;\left(\tfrac{4}{5}\right)\left(\tfrac{3}{5}\right) + \left(\tfrac{3}{5}\right)\left(\tfrac{4}{5}\right) \;=\;\tfrac{12}{25} + \tfrac{12}{25} \;=\;\frac{24}{25}

 
Top