G
Guest
Guest
Last one guys...
\(\displaystyle \L
\int_0^\pi {2\sin (2x + \frac{\pi }{2}} )dx\)
\(\displaystyle \L
= - {\textstyle{1 \over 2}}\left[ {\cos (2x + \frac{\pi }{2})} \right]_0^\pi = - {\textstyle{1 \over 2}}\left[ {\cos (2\pi + \frac{\pi }{2}) - \cos (2(0) + \frac{\pi }{2})} \right]\)
\(\displaystyle \L
= - {\textstyle{1 \over 2}}\left[ {\cos \frac{{5\pi }}{2} - \cos \frac{\pi }{2}} \right] = - {\textstyle{1 \over 2}}\cos 2\pi\)
:?: Thanks a lot.
\(\displaystyle \L
\int_0^\pi {2\sin (2x + \frac{\pi }{2}} )dx\)
\(\displaystyle \L
= - {\textstyle{1 \over 2}}\left[ {\cos (2x + \frac{\pi }{2})} \right]_0^\pi = - {\textstyle{1 \over 2}}\left[ {\cos (2\pi + \frac{\pi }{2}) - \cos (2(0) + \frac{\pi }{2})} \right]\)
\(\displaystyle \L
= - {\textstyle{1 \over 2}}\left[ {\cos \frac{{5\pi }}{2} - \cos \frac{\pi }{2}} \right] = - {\textstyle{1 \over 2}}\cos 2\pi\)
:?: Thanks a lot.