Hello, CJS525!
I assume these are all
regular polygons
\(\displaystyle \;\;\)and that the interior point is the "center" of the figure.
Here's a start . . .
Code:
*
/ \
/ \
/ \
/ \
/ \
/ \
/ B \
/ * \
/ 8 * | \
/ * | \
/ * 30° | \
A* - - - - - + - - - - - *
C
In right triangle \(\displaystyle ABC\), we have: \(\displaystyle \,\angle BAC\,=\,30^o,\;AB\,=\,8\)
Hence: \(\displaystyle \,BC\,=\,4,\;AC = 4\sqrt{3}\)
\(\displaystyle S\:=\:8\sqrt{3}\)
\(\displaystyle a\:=\:4\)
\(\displaystyle P\:=\:3\,\times 8\sqrt{3}\:=\:24\sqrt{3}\)
\(\displaystyle A\:=\:\frac{\sqrt{3}}{4}S^2\:=\:48\sqrt{3}\)