Geometry determining solution using law of sines

This is an SSA problem, so we have to be mindful of the ambiguous case. I would begin by writing:

[MATH]\frac{\sin(50^{\circ})}{34}=\frac{\sin(B)}{40}\implies B=\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)\approx64.3^{\circ}[/MATH]
Thus, we must also consider:

[MATH]B=180^{\circ}-\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)\approx115.7^{\circ}[/MATH]
Given this, can you determine the two possible values for \(\angle C\) and side \(c\)?
 
This is an SSA problem, so we have to be mindful of the ambiguous case. I would begin by writing:

[MATH]\frac{\sin(50^{\circ})}{34}=\frac{\sin(B)}{40}\implies B=\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)\approx64.3^{\circ}[/MATH]
Thus, we must also consider:

[MATH]B=180^{\circ}-\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)\approx115.7^{\circ}[/MATH]
Given this, can you determine the two possible values for \(\angle C\) and side \(c\)?
Are my calculations correct?
 
I don’t understand what you did to get 20/17?

Let's go back to:

[MATH]\frac{\sin(50^{\circ})}{34}=\frac{\sin(B)}{40}[/MATH]
We want to solve for \(B\), so let's multiply by 40:

[MATH]\frac{40\sin(50^{\circ})}{34}=\sin(B)[/MATH]
Arrange as:

[MATH]\sin(B)=\frac{40}{34}\sin(50^{\circ})[/MATH]
Reduce the fraction on the RHS:

[MATH]\sin(B)=\frac{20}{17}\sin(50^{\circ})[/MATH]
Thus:

[MATH]B=\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)[/MATH]
 
Let's go back to:

[MATH]\frac{\sin(50^{\circ})}{34}=\frac{\sin(B)}{40}[/MATH]
We want to solve for \(B\), so let's multiply by 40:

[MATH]\frac{40\sin(50^{\circ})}{34}=\sin(B)[/MATH]
Arrange as:

[MATH]\sin(B)=\frac{40}{34}\sin(50^{\circ})[/MATH]
Reduce the fraction on the RHS:

[MATH]\sin(B)=\frac{20}{17}\sin(50^{\circ})[/MATH]
Thus:

[MATH]B=\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)[/MATH]
So how do I determine the solution?
 
So how do I determine the solution?

I gave you two possible values for \(\angle B\):

i) [MATH]B=\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)[/MATH]
ii) [MATH]B=180^{\circ}-\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)[/MATH]
For each of these cases, what is the value of \(\angle C\)? And then, using the Law of sines, what are the corresponding values for side \(c\)?
 
I gave you two possible values for \(\angle B\):

i) [MATH]B=\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)[/MATH]
ii) [MATH]B=180^{\circ}-\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)[/MATH]
For each of these cases, what is the value of \(\angle C\)? And then, using the Law of sines, what are the corresponding values for side \(c\)?
Okay, I’ve never worked with reducing fractions in this case?
 
It's not necessary to reduce fractions to find the angles, but it's just good form to do so.
Well, so far I have m<C = 180 - (50 + 64.3) = 114.3
m<C = 180 - (50 + 115.7) = 14.3
Sin 114.3/C = sin50/34
34sin114.3/50 = 1.4
 
For the first case I listed, we could state:

[MATH]C=180^{\circ}-\left(50^{\circ}+\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)\right)=130^{\circ}-\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)\approx65.7^{\circ}[/MATH]
And then using the Law of Sines:

[MATH]c=\frac{34\sin(C)}{\sin(50^{\circ})}\approx?[/MATH]
For the second case:

[MATH]C=180^{\circ}-\left(50^{\circ}+180^{\circ}-\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)\right)=\arcsin\left(\frac{20}{17}\sin(50^{\circ})\right)-50^{\circ}\approx14.3^{\circ}[/MATH]
And then using the Law of Sines:

[MATH]c=\frac{34\sin(C)}{\sin(50^{\circ})}\approx?[/MATH]
 
As a general rule, I would advise against using the values rounded to one decimal place in intermediary calculations. :)
 
Top