How do I find the sum of the series from 0 to infinity of: (2^n)/[4^(2n+1)] ?
T thebenji New member Joined Sep 2, 2006 Messages 31 Nov 5, 2006 #1 How do I find the sum of the series from 0 to infinity of: (2^n)/[4^(2n+1)] ?
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,216 Nov 5, 2006 #2 \(\displaystyle \L\\\sum_{n=0}^{\infty}\frac{2^{n}}{4^{2n+1}}\) \(\displaystyle \L\\\frac{2^{n}}{4^{2n+1}}=\frac{2^{n}}{4^{2n}\cdot{4}}=\frac{2^{n}}{16^{n}\cdot{4}}=\frac{1}{4}\cdot\frac{1}{8^{n}}\) Factor out the 1/4: \(\displaystyle \L\\\frac{1}{4}\sum_{n=0}^{\infty}\frac{1}{8^{n}}\) Geometric series: \(\displaystyle \L\\\frac{1}{1-\frac{1}{8}}=\frac{8}{7}\) \(\displaystyle \L\\\frac{8}{7}\cdot\frac{1}{4}=\frac{2}{7}\)
\(\displaystyle \L\\\sum_{n=0}^{\infty}\frac{2^{n}}{4^{2n+1}}\) \(\displaystyle \L\\\frac{2^{n}}{4^{2n+1}}=\frac{2^{n}}{4^{2n}\cdot{4}}=\frac{2^{n}}{16^{n}\cdot{4}}=\frac{1}{4}\cdot\frac{1}{8^{n}}\) Factor out the 1/4: \(\displaystyle \L\\\frac{1}{4}\sum_{n=0}^{\infty}\frac{1}{8^{n}}\) Geometric series: \(\displaystyle \L\\\frac{1}{1-\frac{1}{8}}=\frac{8}{7}\) \(\displaystyle \L\\\frac{8}{7}\cdot\frac{1}{4}=\frac{2}{7}\)
skeeter Elite Member Joined Dec 15, 2005 Messages 3,216 Nov 5, 2006 #3 start by "rearranging" the denominator ... 4<sup>2n+1</sup> = 2<sup>4n+2</sup> = 2<sup>4n</sup>*2<sup>2</sup> = 4*(2<sup>4</sup>)<sup>n</sup> = 4*16<sup>n</sup> 2<sup>n</sup>/(4*16<sup>n</sup>) = (1/4)(2<sup>n</sup>/16<sup>n</sup>) = (1/4)(1/8)<sup>n</sup> now you have an infinite geometric series whose sum is of the form ... k*a<sub>o</sub>/(1 - r) S = (1/4)*1/(1 - 1/8) = (1/4)(8/7) = 2/7
start by "rearranging" the denominator ... 4<sup>2n+1</sup> = 2<sup>4n+2</sup> = 2<sup>4n</sup>*2<sup>2</sup> = 4*(2<sup>4</sup>)<sup>n</sup> = 4*16<sup>n</sup> 2<sup>n</sup>/(4*16<sup>n</sup>) = (1/4)(2<sup>n</sup>/16<sup>n</sup>) = (1/4)(1/8)<sup>n</sup> now you have an infinite geometric series whose sum is of the form ... k*a<sub>o</sub>/(1 - r) S = (1/4)*1/(1 - 1/8) = (1/4)(8/7) = 2/7