General solution of the differential

hoplessatmaths

New member
Joined
Sep 7, 2009
Messages
3
Hi
I'm (very) stuck! I have to use an answer from a previous question (f'(x)=2/3cos(x) e^x(2/3sin(x)) to find the general solution of the differential equation:

dy/dx = 2cos x e^x (2/3sin x)y^2/3 (y>0)

Answer given in implicit form.

So far I've got

dy/y^2/3=2 cos x e^x(2/3sin x) dx

Can you please give me a push in the right direction?
 
What is dydx?\displaystyle What \ is \ \frac{dy}{dx}?

You have dydx = (2)(cos(x))(ex)(23sin(x))(y23)\displaystyle You \ have \ \frac{dy}{dx} \ = \ (2)(cos(x))(e^{x})\bigg(\frac{2}{3sin(x)}\bigg)\bigg(\frac{y^{2}}{3}\bigg)

I suspect that isnt right.\displaystyle I \ suspect \ that \ isn't \ right.

If you want help from us, get it together.\displaystyle If \ you \ want \ help \ from \ us, \ get \ it \ together.
 
If you have dydx=2cos(x)ex23sin(x)y23\displaystyle \frac{dy}{dx}=2cos(x)e^{x}\cdot \frac{2}{3}sin(x)\cdot \frac{y^{2}}{3}

Then separate variables and integrate.

3y2dy=43cos(x)exsin(x)dx\displaystyle \frac{3}{y^{2}}dy=\frac{4}{3}cos(x)e^{x}sin(x)dx

3dyy2=23exsin(2x)dx\displaystyle 3\int \frac{dy}{y^{2}}=\frac{2}{3}\int e^{x}sin(2x)dx

Now integrate both sides remembering the integration constant.
 
Dear hopelessatmaths;

(2/3sin(x)) = 2sin(x)3 (is mathematically correct), however it behooves\displaystyle (2/3sin(x)) \ = \ \frac{2sin(x)}{3} \ (is \ mathematically \ correct), \ however \ it \ behooves

one to use grouping symbols if only for emphasis, so we have a better grasp of what you\displaystyle one \ to \ use \ grouping \ symbols \ if \ only \ for \ emphasis, \ so \ we \ have \ a \ better \ grasp \ of \ what \ you

 are saying, as [(2/3)sin(x)] leaves no doubt. Sorry if I was a little testy, I apologize.\displaystyle \ are \ saying, \ as \ [(2/3)sin(x)] \ leaves \ no \ doubt. \ Sorry \ if \ I \ was \ a \ little \ testy, \ I \ apologize.
 
Hi don't worry about the testy bit! I'm having a really bad day on integration, and everything else to do with calculus! Could you please give a little help on the integration process?

Many thanks
 
hoplessatmaths said:
Hi don't worry about the testy bit! I'm having a really bad day on integration, and everything else to do with calculus! Could you please give a little help on the integration process?

Many thanks

I'll do a similar but different integration for you (these are standard integration - should be in your textbook).

excos(x)dx=exsin(x)exsin(x)dx\displaystyle \int e^x \cos(x) dx \, = \, e^x\cdot \sin(x) \, - \, \int e^x \sin(x) dx

excos(x)dx=exsin(x)[excos(x)+excos(x)dx]\displaystyle \int e^x \cos(x) dx \, = \, e^x\cdot \sin(x) \, - \, [-e^x\cdot \cos(x) \, + \, \int e^x \cos(x) dx]

excos(x)dx=12[exsin(x)+excos(x)]\displaystyle \int e^x \cos(x) dx \, = \, \frac{1}{2}\cdot [e^x\cdot \sin(x) \, + \, e^x\cdot \cos(x) ]

Follow the same procedure...
 
Using galactus"s solution, we get;

3dyy2 = 23exsin(2x)dx\displaystyle 3\int \frac{dy}{y^{2}} \ = \ \frac{2}{3}\int e^{x}sin(2x)dx

Hence, 3y = 2ex[sin(2x)2cos(2x)]15+C, I by P.\displaystyle Hence, \ \frac{-3}{y} \ = \ \frac{2e^{x}[sin(2x)-2cos(2x)]}{15}+C, \ I \ by \ P.

y3 = 152ex[sin(2x)2cos(2x)]+C\displaystyle \frac{-y}{3} \ = \ \frac{15}{2e^{x}[sin(2x)-2cos(2x)]}+C

y = 452ex[sin(2x)2cos(2x)]+C\displaystyle y \ = \ -\frac{45}{2e^{x}[sin(2x)-2cos(2x)]}+C
 
Top