Hello, she18!
EvaluateL \(\displaystyle \tan\left(\pi\,+\,\arcsin\frac{2}{3}\right)\)
First, we note note that:
.\(\displaystyle \tan(x\,+\,\pi)\,=\,\tan(x)\)
. . Hence:
.\(\displaystyle \tan\left(\pi + \arcsin\frac{2}{3}\right)\,=\,\tan\left(\arcsin\frac{2}{3}\right)\)
\(\displaystyle \arcsin\frac{2}{3}\) is just some angle, \(\displaystyle \theta\), such that: \(\displaystyle \sin\theta\,=\,\frac{2}{3}\)
Since \(\displaystyle \sin\theta\,=\,\frac{2}{3}\,=\,\frac{opp}{hyp}\), we find that: \(\displaystyle adj = \sqrt{5}\;\;\Rightarrow\;\;\tan\theta\,=\,\frac{2}{\sqrt{5}}\;\;\Rightarrow\;\;\theta\,=\,\arctan\frac{2}{\sqrt{5}}\)
. . And we have:
.\(\displaystyle \tan\left(\arctan\frac{2}{\sqrt{5}}\right) \:= \:\frac{2}{\sqrt{5}}\)