Gauss-Jacobi and Gauss-Siedel

Apprentice123

New member
Joined
Sep 2, 2008
Messages
22
Solving the system of linear equations using the methods of Gauss-Jacobi and Gauss-Siedel. Using precision of 1x103\displaystyle 1x10^{-3}
A=[-4 -1 2; 1 -10 6; 1 -3 -6]
B=[x1; x2; x3]
C=[1 -5 7]

A.B = C

Using Gauss-Jacobi I find:
I used x^0 = [0;0;0]. I can ?
With 11 iterations I find
X1=0,762\displaystyle X_1 = -0,762
X2=0,271\displaystyle X_2 = -0,271
X3=1,159\displaystyle X_3 = -1,159
Test Stop
Mr=1,159(1,158)1,159=8,63x104<1x103\displaystyle M_r = \frac{|-1,159 - (-1,158)|}{|-1,159|} = 8,63x10^{-4} < 1x10^{-3}
The test is stopped for any X (x1, x2, x3) or for all ?

Using Gauss-Siedel
With 9 iterations I find
Used x^0 = [0;0;0]
X1=0,758\displaystyle X_1 = -0,758
X2=0,269\displaystyle X_2 = -0,269
X3=1,155\displaystyle X_3 = -1,155
Test Stop
Mr=1,155(1,154)1,155=8,65x104<1x103\displaystyle M_r = \frac{|-1,155 - (-1,154)|}{|-1,155|} = 8,65x10^{-4} < 1x10^{-3}


Are correct ?
 
Top