Apprentice123
New member
- Joined
- Sep 2, 2008
- Messages
- 22
Solving the system of linear equations using the methods of Gauss-Jacobi and Gauss-Siedel. Using precision of 1x10−3
A=[-4 -1 2; 1 -10 6; 1 -3 -6]
B=[x1; x2; x3]
C=[1 -5 7]
A.B = C
Using Gauss-Jacobi I find:
I used x^0 = [0;0;0]. I can ?
With 11 iterations I find
X1=−0,762
X2=−0,271
X3=−1,159
Test Stop
Mr=∣−1,159∣∣−1,159−(−1,158)∣=8,63x10−4<1x10−3
The test is stopped for any X (x1, x2, x3) or for all ?
Using Gauss-Siedel
With 9 iterations I find
Used x^0 = [0;0;0]
X1=−0,758
X2=−0,269
X3=−1,155
Test Stop
Mr=∣−1,155∣∣−1,155−(−1,154)∣=8,65x10−4<1x10−3
Are correct ?
A=[-4 -1 2; 1 -10 6; 1 -3 -6]
B=[x1; x2; x3]
C=[1 -5 7]
A.B = C
Using Gauss-Jacobi I find:
I used x^0 = [0;0;0]. I can ?
With 11 iterations I find
X1=−0,762
X2=−0,271
X3=−1,159
Test Stop
Mr=∣−1,159∣∣−1,159−(−1,158)∣=8,63x10−4<1x10−3
The test is stopped for any X (x1, x2, x3) or for all ?
Using Gauss-Siedel
With 9 iterations I find
Used x^0 = [0;0;0]
X1=−0,758
X2=−0,269
X3=−1,155
Test Stop
Mr=∣−1,155∣∣−1,155−(−1,154)∣=8,65x10−4<1x10−3
Are correct ?