Hello, Ematrix!
Find the domain and range of: \(\displaystyle \L\,f(x) \:=\:\frac{2x\,-\,5}{x\,+\,7}\)
Domain: all real \(\displaystyle x\,\neq\,-7\)
The Range is a bit tricky to determine.
As \(\displaystyle x\,\to\,-7^+,\;f(x)\,\to\,\infty\) . . . As \(\displaystyle x\,\to-7^-,\;f(x)\,\to\,\)-\(\displaystyle \infty\)
It looks like the range is all real \(\displaystyle y.\)
But consider the limit of \(\displaystyle f(x)\) as \(\displaystyle x\,\to\,\infty:\L\;\;\lim_{x\to\infty}\frac{2x\,-\,5}{x\,+\,7}\)
Divide top and bottom by \(\displaystyle x:\L\;\;\lim_{x\to\infty}\frac{2\,-\,\frac{5}{x}}{1\,+\,\frac{7}{x}}\;=\;\frac{2\,-\,0}{1\,+\,0}\;=\;2\)
The graph has a horizontal asymptote: \(\displaystyle \,y\:=\:2\)
But a graph
can cross a horizontal asymptote
\(\displaystyle \;\;\)"before" it approaches 2 at the extreme right and extreme left.
So we must ask: Can \(\displaystyle f(x) = 2\,?\)
\(\displaystyle \;\;\)We would have: \(\displaystyle \,\frac{2x\,-\,5}{x\,+\,7}\:=\:2\;\;\Rightarrow\;\;2x\,-\,5\:=\:2x\,+\,14\;\;\Rightarrow\;\;0\,=\,19\;\)
??
\(\displaystyle \;\;\)The answer is: no . . . \(\displaystyle f(x)\)
never equals \(\displaystyle 2.\)
Range: all real \(\displaystyle y\,\neq\,2.\)