Function f(1-x)

bobrossu

New member
Joined
Aug 16, 2017
Messages
29
Confused on what to do first.

Problem:

If f(1-x)=((x2-2x-4)/(2-x))

find f(1/x)

Work shown would be great!
 
(x2-2x-4)/(2-x) = [(x-1)2 - 5]/[1 - (x-1)]....... continue....

Why is it (x-1) and not (1-x) when substituting the x's in the function?

Also what happened to make the (x2-2x-4) into ((x-1)2 - 5) ?

**Edit**
Nevermind, I see what you did! Thanks!
 
Last edited:
Confused on what to do first.

Problem:

If f(1-x)=((x2-2x-4)/(2-x))

find f(1/x)

Work shown would be great!
Let's try it like this.

\(\displaystyle u = 1 - x \implies x = 1 - u \implies x^2 = 1 - 2u + u^2.\)

\(\displaystyle \therefore f(1 - x) = f(u) = \dfrac{x^2 - 2x - 4}{2 - x} = \dfrac{(1 - 2u + u^2) - 2(1 - u) - 4}{2 - (1 - u)} \implies\)

\(\displaystyle f(u) = \dfrac{1 - 2u + u^2 - 2 + 2u - 4}{2 - 1 + u} = \dfrac{u^2 - 5}{1 + u}.\)

Let's check.

\(\displaystyle f(1 - x) = \dfrac{(1 - x)^2 - 5}{1 + (1 - x)} = \dfrac{1 - 2x + x^2 - 5}{2 - x} = \dfrac{x^2 - 2x - 4}{2 - x}.\)

It checks.

Therefore what is \(\displaystyle f \left ( \dfrac{1}{x} \right ).\)
 
Let's try it like this.

\(\displaystyle u = 1 - x \implies x = 1 - u \implies x^2 = 1 - 2u + u^2.\)

\(\displaystyle \therefore f(1 - x) = f(u) = \dfrac{x^2 - 2x - 4}{2 - x} = \dfrac{(1 - 2u + u^2) - 2(1 - u) - 4}{2 - (1 - u)} \implies\)

\(\displaystyle f(u) = \dfrac{1 - 2u + u^2 - 2 + 2u - 4}{2 - 1 + u} = \dfrac{u^2 - 5}{1 + u}.\)

Let's check.

\(\displaystyle f(1 - x) = \dfrac{(1 - x)^2 - 5}{1 + (1 - x)} = \dfrac{1 - 2x + x^2 - 5}{2 - x} = \dfrac{x^2 - 2x - 4}{2 - x}.\)

It checks.

Therefore what is \(\displaystyle f \left ( \dfrac{1}{x} \right ).\)

Is it f(1/x)=(1-5x2)/(x2​+x) ?
 
Top