m and k are both integersm and k both integers or only m ?
Just when I thought I solved itm and k are both integers
Perfect.Here's my solution (click to reveal):-
Because
[math]x! (x+1)! = (x!)^2 (x+1)[/math]
It follows that
[math]\prod_{x=1}^{100}x![/math]
[math]= \prod_{y=1}^{50} \left( (2y-1)! (2y)! \right)[/math]
[math]=\left(\prod_{y=1}^{50} (2y-1)!\right)^2 \times \prod_{y=1}^{50} (2y)[/math]
[math]= \left(\prod_{y=1}^{50} (2y-1)!\right)^2 \times 2^{50} \times 50![/math]
[math]= \left(2^{25} \times \prod_{y=1}^{50} (2y-1)! \right)^2 \times 50![/math]
The rest is child's play