four basic/easy integrals

golfman44

New member
Joined
Dec 4, 2009
Messages
1
(x^4+3)^4x^3dx

let u = x^4 + 3
du = 4x^3 dx

1/4 du = x^3 dx

1/4 * integral (u)^4 du

1/4 * integral 1/5(u)^5 + c

answer: 1/20 (x^4 + 3)^5 + c


THE NEXT THREE I AM STRUGGLING WITH... HELP IS APPRECIATED!

2. integral (x^2 - 2)^2 dx

3. integral sin^5(2x) cos(2x) dx

4. integral [ (9x^6 + 5x^4 + 7) / (x^3) ] dx
 
(x22)2dx\displaystyle \int (x^{2}-2)^{2}dx

Expand out and integrate term by term.

(x22)2dx=x4dx4x2dx+4dx\displaystyle \int(x^{2}-2)^{2}dx=\int x^{4}dx -4\int x^{2}dx+4\int dx

3. sin5(2x)cos(2x)dx\displaystyle \int sin^{5}(2x) cos(2x) dx

This is a basic substitutions. Okey-doke.

Let u=sin(2x),   du2=cos(2x)dx\displaystyle u=sin(2x), \;\ \frac{du}{2}=cos(2x)dx

Make the subs and we get:

12u5du\displaystyle \frac{1}{2}\int u^{5}du

Now, it's easier?.


Long divide and then integrate term by term.

9x3dx+5xdx+7x3dx\displaystyle 9\int x^{3}dx+5\int xdx+7\int x^{-3}dx
 
Top