You have:
. . . . .\(\displaystyle \large{L\mbox{ }=\mbox{ }2C\mbox{ }+\mbox{ }\frac{\pi}{2}(X\mbox{ }+\mbox{ }D)\mbox{ }+\mbox{ }\frac{(X\mbox{ }-\mbox{ }D)^2}{4C}}\)
To solve for C, a good first step would be to multiply through by C to clear that out of the denominator.
. . . . .\(\displaystyle \large{LC\mbox{ }=\mbox{ }2C^2\mbox{ }+\mbox{ }\frac{\pi}{2}(CX\mbox{ }+\mbox{ }CD)\mbox{ }+\mbox{ }\frac{1}{4}(X\mbox{ }-\mbox{ }D)^2}\)
Moving everything together and combining in terms of C:
. . . . .\(\displaystyle \large{0\mbox{ }=\mbox{ }2C^2\mbox{ }+[\frac{\pi}{2}X\mbox{ }+\mbox{ }\frac{\pi}{2}D\mbox{ }-\mbox{ }L]C\mbox{ }+\mbox{ }\frac{1}{4}(X\mbox{ }-\mbox{ }D)^2}\)
At this point, I think you'll have to apply the Quadratic Formula to find C in terms of X, L, and D. It won't be pretty. :shock:
Eliz.