\(\displaystyle \mbox{Let }\, a,\, b\, \in\, \mathbb{R}^+\, \mbox{ such that }\, a\, \geq\, b\, \geq\, 1.\)
\(\displaystyle \mbox{Prove that }\, 3ab\, +\, 4a^2\, +\, 2ab^2\, +\, 2a^2b^2\, +\, a^3b\, +\, a^3\, \geq\, 11a^2b\, +\, a\, +\, b\)
\(\displaystyle \mbox{Prove that }\, 3ab\, +\, 4a^2\, +\, 2ab^2\, +\, 2a^2b^2\, +\, a^3b\, +\, a^3\, \geq\, 11a^2b\, +\, a\, +\, b\)
Last edited by a moderator: