Hello, whitrivenbark!
This is
The Factoring Problem From **** (coming to a theater near you).
Find all the zeros of this polynomial:
\(\displaystyle x^8\,+\,2x^7\,+\,3x^6\,+\,6x^5\,-\,49x^4\,-\,98^3\,+\,45x^2\,+\,90x\)
First, we can factor out an \(\displaystyle x:\;\;x\cdot(x^7\,+\,2x^6\,+\,3x^5\,+\,6x^4\,-\,49x^3\,-\,98x^2\,+\,45x\,+\,90)\)
Factor 'by grouping':
.\(\displaystyle x\cdot[x^6(x\,+\,2)\,+\,3x^4(x\,+\,2)\,-\,49x^2(x\,+\,2)\,+\,45(x\,+\,2)]\)
. . . and we have:
.\(\displaystyle x\cdot(x\,+\,2)\cdot[x^6\,+\,3x^4\,-\,49x^2\,+\,45]\)
By inspection, we see that \(\displaystyle x\,=\,\pm1\) are zeros.
. . . Hence, we have:
.\(\displaystyle x\cdot(x\,+\,2)\cdot(x^2\,-\,1)\cdot(x^4\,+\,4x^2\,-\,45)\)
And the quartic factors:
.\(\displaystyle x\cdot(x\,+\,2)\cdot(x^2\,-\,1)\cdot(x^2\,-\,5)(x^2\,+\,9)\)
Set each factor equal to zero and solve for \(\displaystyle x\).
. . . \(\displaystyle x\,=\,0\)
. . . \(\displaystyle x\,+\,2\:=\:0\;\;\Rightarrow\;\;x\,=\,\)-\(\displaystyle 2\)
. . . \(\displaystyle x^2\,-\,1\:=\:0\;\;\Rightarrow\;\;x^2\,=\,1\;\;\Rightarrow\;\;x\,=\,\pm1\)
. . . \(\displaystyle x^2\,-\,5\:=\:0\;\;\Rightarrow\;\;x^2\,=\,5\;\;\Rightarrow\;\;x\,=\,\pm\sqrt{5}\)
. . . \(\displaystyle x^2\,+\,9\:=\:0\;\;\Rightarrow\;\;x^2\,=\,\)-\(\displaystyle 9\;\;\Rightarrow\;\;x\,=\,\pm3i\)
There! . . . just as pka said.