\(\displaystyle a) \ x-axis, \ disc \ and \ shell.\)
\(\displaystyle \pi\int_{0}^{9}(144-16x)dx \ = \ 684\pi \ = \ \frac{\pi}{8}\int_{0}^{12}y^3dy.\)
\(\displaystyle b) \ y-axis, \ disc \ and \ shell.\)
\(\displaystyle \frac{\pi}{256}\int_{0}^{12}y^4dy \ = \ \frac{972\pi}{5} \ = \ 2\pi\int_{0}^{9}(12x-4x^{3/2})dx.\)
\(\displaystyle c) \ line \ y \ = \ 12, \ disc \ and \ shell.\)
\(\displaystyle \pi\int_{0}^{9}(4x^{1/2}-12)^2dx \ = \ 216\pi \ = \ \frac{\pi}{8}\int_{0}^{12}(12y^2-y^3)dy.\)
\(\displaystyle d) \ line \ x \ = \ 9, \ disc \ and \ shell.\)
\(\displaystyle \pi\int_{0}^{12}\bigg[81-\bigg(\frac{y^2}{16}-9\bigg)^2\bigg]dy \ = \ \frac{2268\pi}{5} \ = \ 2\pi\int_{0}^{9}(12-4x^{1/2})(9-x)dx.\)