Can somebody check over these and see if I did them correctly? Thanks
\(\displaystyle \[
\begin{array}{l}
l_{lm} \; = \;\sqrt {\left( {a\; + \;b\; - \;0} \right)^2 \; + \;\left( {0\; - \;\left( {b\; + \;a} \right)} \right)^2 } \\
l_{lm} \; = \;\sqrt {\left( {a^2 \; + \;2ab\; + \;b^2 } \right)\; + \;\left( {a^2 \; + \;2ab\; + \;b^2 } \right)} \\
l_{lm} \; = \;\sqrt {2a^2 \; + \;4ab\; + \;2b^2 } \\
\end{array}
\]\)
and:
\(\displaystyle \[
\begin{array}{l}
l_{pn} \; = \;\sqrt {\left( { - b\; - \;\left( {\frac{{a\; + \;b}}{2}} \right)} \right)^2 \; + \;\left( { - a\; - \;\left( {\frac{{b\; + \;a}}{2}} \right)} \right)^2 } \\
l_{pn} \; = \;\sqrt {\left( {b^2 \; + \;\frac{{2ab\; + \;b^2 }}{2}\; + \;\frac{{a^2 \; + \;2ab\; + \;b^2 }}{4}} \right)\; + \;\left( {a^2 \; + \;\frac{{2ab\; + \;a^2 }}{2}\; + \;\frac{{b^2 \; + \;2ab\; + \;a^2 }}{4}} \right)} \\
l_{pn} \; = \;\sqrt {\frac{{4b^2 \; + \;4ab\; + \;2b^2 \; + \;a^2 \; + \;2ab\; + \;b^2 \; + \;4a^2 \; + \;4ab\; + 2a^2 \; + \;b^2 \; + \;2ab\; + \;a^2 }}{4}} \\
l_{pn} \, = \;\sqrt {\frac{{8b^2 \; + \;12ab\; + \;8a^2 }}{4}} \\
l_{pn} \, = \;\sqrt {2b^2 \; + \;3ab\; + \;2a^2 } \\
\end{array}
\]\)
\(\displaystyle \[
\begin{array}{l}
l_{lm} \; = \;\sqrt {\left( {a\; + \;b\; - \;0} \right)^2 \; + \;\left( {0\; - \;\left( {b\; + \;a} \right)} \right)^2 } \\
l_{lm} \; = \;\sqrt {\left( {a^2 \; + \;2ab\; + \;b^2 } \right)\; + \;\left( {a^2 \; + \;2ab\; + \;b^2 } \right)} \\
l_{lm} \; = \;\sqrt {2a^2 \; + \;4ab\; + \;2b^2 } \\
\end{array}
\]\)
and:
\(\displaystyle \[
\begin{array}{l}
l_{pn} \; = \;\sqrt {\left( { - b\; - \;\left( {\frac{{a\; + \;b}}{2}} \right)} \right)^2 \; + \;\left( { - a\; - \;\left( {\frac{{b\; + \;a}}{2}} \right)} \right)^2 } \\
l_{pn} \; = \;\sqrt {\left( {b^2 \; + \;\frac{{2ab\; + \;b^2 }}{2}\; + \;\frac{{a^2 \; + \;2ab\; + \;b^2 }}{4}} \right)\; + \;\left( {a^2 \; + \;\frac{{2ab\; + \;a^2 }}{2}\; + \;\frac{{b^2 \; + \;2ab\; + \;a^2 }}{4}} \right)} \\
l_{pn} \; = \;\sqrt {\frac{{4b^2 \; + \;4ab\; + \;2b^2 \; + \;a^2 \; + \;2ab\; + \;b^2 \; + \;4a^2 \; + \;4ab\; + 2a^2 \; + \;b^2 \; + \;2ab\; + \;a^2 }}{4}} \\
l_{pn} \, = \;\sqrt {\frac{{8b^2 \; + \;12ab\; + \;8a^2 }}{4}} \\
l_{pn} \, = \;\sqrt {2b^2 \; + \;3ab\; + \;2a^2 } \\
\end{array}
\]\)