Let the joint probability density function of [imath]X, Y, \ \text{and} \ Z[/imath] be given by
[imath]\displaystyle f(x,y,z) = \begin{cases} 6e^{-x-y-z} & \ \ \ ,0< x < y < z < \infty \\ 0 & \ \ \ , \text{elsewhere} \end{cases} [/imath]
Find [imath]E(x) \ \text{and} \ E(y).[/imath]
Is it correct to write?
[imath]\displaystyle E(x) = \int\int\int 6xe^{-x-y-z} \ dx \ dy \ dz[/imath]
AND
[imath]\displaystyle E(y) = \int\int\int 6ye^{-x-y-z} \ dx \ dy \ dz[/imath]
Or do I have first to find the marginal joint probability density functions [imath]f_X(x) \ \text{and} \ f_Y(y)[/imath]?
[imath]\displaystyle f(x,y,z) = \begin{cases} 6e^{-x-y-z} & \ \ \ ,0< x < y < z < \infty \\ 0 & \ \ \ , \text{elsewhere} \end{cases} [/imath]
Find [imath]E(x) \ \text{and} \ E(y).[/imath]
Is it correct to write?
[imath]\displaystyle E(x) = \int\int\int 6xe^{-x-y-z} \ dx \ dy \ dz[/imath]
AND
[imath]\displaystyle E(y) = \int\int\int 6ye^{-x-y-z} \ dx \ dy \ dz[/imath]
Or do I have first to find the marginal joint probability density functions [imath]f_X(x) \ \text{and} \ f_Y(y)[/imath]?