.\(\displaystyle \L \cos{(135 + 60) = \cos{135} \cdot \cos{60} \, - \, \sin{135} \cdot \sin{60}\)
. Where
. . .\(\displaystyle \L \begin{align*}
\cos{135} &= \cos{(90 \, + \, 45)} \\
\\
\\
&= \cos{90} \cdot \cos{45} \, - \, \sin{90} \cdot \sin{45} \\
\\
\\
&= 0 \cdot \frac{1}{\sqrt{2}} \, - \, 1 \cdot \frac{1}{\sqrt{2}} \\
\\
\\
&= -\frac{1}{\sqrt{2}} \\
\end{align*}\)
. . .\(\displaystyle \L \cos{60} = \frac{1}{2}\)
. . .\(\displaystyle \L \begin{align*} \sin{135} &= \sin{(90 + 45)} \\
\\
\\
&= \sin{90} \cdot \cos{45} \, + \, \cos{90} \cdot \sin{45} \\
\\
\\
&= 1 \cdot \frac{1}{\sqrt{2}} \, + \, 0 \cdot \frac{1}{\sqrt{2}} \\
\\
\\
&= \frac{1}{\sqrt{2}} \\
\end{align*}\)
. . .\(\displaystyle \L \sin{60} = \frac{\sqrt{3}}{2}\)
So we have
.\(\displaystyle \L \begin{align*}\cos{195} &= \left(-\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) - \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) \\
\\
\\
&= -\frac{1}{2\sqrt{2}} \, - \, \frac{\sqrt{3}}{2\sqrt{2}} \\
\\
\\
&= -\frac{1 + \sqrt{3}}{2\sqrt{2}} \\
\end{align*}\)
So
. . .\(\displaystyle \L \begin{align*}
\sec{195} &= -\frac{2\sqrt{2}}{1 + \sqrt{3}} \\
\\
\\
&= -\frac{2\sqrt{2}(1 - \sqrt{3})}{1 - 3} \\
\\
\\
&= -\frac{2\sqrt{2} - 2\sqrt{6}}{-2} \\
\\
\\
&= \sqrt{2} - \sqrt{6} \\
\end{align*}\)