If you have the anisotropic diffusion equation to find u(x,y)
[math]\left(\mu_{x}\frac{\partial^{2}u}{\partial x^{2}}+\mu_{y}\frac{\partial^{2}u}{\partial y^{2}}\right)=f(x,y) \tag 1[/math]
and you discretize the problem using second-order finite difference formulas, leading to the discretized form:
[math]{-\mu}_{x} \left(\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}\right) - {\mu}_{y} \left(\frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{h^2}\right) = f_{i,j} \tag 2[/math]
How do you calculate the finite difference stencil S corresponding to this finite difference scheme?
[math]\left(\mu_{x}\frac{\partial^{2}u}{\partial x^{2}}+\mu_{y}\frac{\partial^{2}u}{\partial y^{2}}\right)=f(x,y) \tag 1[/math]
and you discretize the problem using second-order finite difference formulas, leading to the discretized form:
[math]{-\mu}_{x} \left(\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}\right) - {\mu}_{y} \left(\frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{h^2}\right) = f_{i,j} \tag 2[/math]
How do you calculate the finite difference stencil S corresponding to this finite difference scheme?