Finding Limits: limit x->0 (cos x - 1) / x^2, sin^2(x) / x^2

SilvrNitr8

New member
Joined
Jan 30, 2009
Messages
1
I took Calculus a long time ago and I can't remember how to do limits. I was wondering if someone can show me step by step on how to take the limits of the following:

limit x->0 (cosx-1)/x^2

limit x-> sin^2(x)/x^2

Thanks
 
Re: Finding Limits

Hello, SilvrNitr8!

We’re expected to know that:   limθ0sinθθ=1\displaystyle \text{We're expected to know that: }\;\lim_{\theta\to0}\frac{\sin\theta}{\theta} \:=\:1

I'll do the second one first . . .



We have:   limx0(sinxx)2  =  12  =  1\displaystyle \text{We have: }\;\lim_{x\to0}\left(\frac{\sin x}{x}\right)^2 \;=\;1^2 \;=\;1




Multiply top and bottom by (cos+1)\displaystyle \text{Multiply top and bottom by }(\cos + 1)

. . cosx1x2cosx+1cosx+1  =  cos2 ⁣x1x2(cosx+1)  =  (1cos2 ⁣x)x2(cosx+1)  =  sin2 ⁣xx2(cosx+1)\displaystyle \frac{\cos x - 1}{x^2}\cdot\frac{\cos x+ 1}{\cos x+ 1} \;=\; \frac{\cos^2\!x-1}{x^2(\cos x+1)} \;=\;\frac{-(1-\cos^2\!x)}{x^2(\cos x + 1)} \;=\;\frac{-\sin^2\!x}{x^2(\cos x+1)}

Then:   limx0(sinxx)21cosx+1  =  (12)11+1  =  12\displaystyle \text{Then: }\;\lim_{x\to0}\left(\frac{\sin x}{x}\right)^2\cdot\frac{-1}{\cos x + 1} \;=\;(1^2)\cdot\frac{-1}{1+1} \;=\;-\frac{1}{2}

 
Top