Find the largest and smallest values of the given function over the prescribed closed, bounded interval.
\(\displaystyle f(x) = \frac{ln(x + 1)}{x + 1}\) for 0 ? x ? 2
\(\displaystyle f'(x) = \frac{\frac{1}{x + 1}(1)(x + 1) - (1)(ln(x + 1))}{(x + 1)^{2}}\)
\(\displaystyle f'(x) = \frac{\frac{x + 1}{x + 1} - ln(x + 1)}{(x + 1)^{2}}\)
\(\displaystyle f'(x) = \frac {1 - ln(x + 1)}{(x + 1)^{2}}\)
\(\displaystyle 0 = \frac {1 - ln(x + 1)}{(x + 1)^{2}}\)
\(\displaystyle 0 = 1 - ln(x + 1)\)
\(\displaystyle ln(x + 1) = 1\)
...don't know what to do now.
\(\displaystyle (x + 1)^{2} = 0\)
\(\displaystyle (x + 1)(x - 1) = 0\)
\(\displaystyle x = 1\), \(\displaystyle x = -1\)
\(\displaystyle f(0) = 0\)
\(\displaystyle f(2) = 0.3662\)
\(\displaystyle f(1) = 0.34657\)
\(\displaystyle f(-1) = error\)
\(\displaystyle f(x) = \frac{ln(x + 1)}{x + 1}\) for 0 ? x ? 2
\(\displaystyle f'(x) = \frac{\frac{1}{x + 1}(1)(x + 1) - (1)(ln(x + 1))}{(x + 1)^{2}}\)
\(\displaystyle f'(x) = \frac{\frac{x + 1}{x + 1} - ln(x + 1)}{(x + 1)^{2}}\)
\(\displaystyle f'(x) = \frac {1 - ln(x + 1)}{(x + 1)^{2}}\)
\(\displaystyle 0 = \frac {1 - ln(x + 1)}{(x + 1)^{2}}\)
\(\displaystyle 0 = 1 - ln(x + 1)\)
\(\displaystyle ln(x + 1) = 1\)
...don't know what to do now.
\(\displaystyle (x + 1)^{2} = 0\)
\(\displaystyle (x + 1)(x - 1) = 0\)
\(\displaystyle x = 1\), \(\displaystyle x = -1\)
\(\displaystyle f(0) = 0\)
\(\displaystyle f(2) = 0.3662\)
\(\displaystyle f(1) = 0.34657\)
\(\displaystyle f(-1) = error\)