finding inverse function

spacewater

Junior Member
Joined
Jul 10, 2009
Messages
67
Problem f(x)=2y2+5\displaystyle f(x) = -2y^2 +5

Steps
x=2y2+5\displaystyle x=-2y^2+5

x5=2y2\displaystyle x-5 = -2y^2

x5=2y\displaystyle \sqrt{x-5}=-2y

x52=2y2\displaystyle \frac{\sqrt{x-5}}{-2} = \frac{-2y}{-2}

x52=y\displaystyle \frac{\sqrt{x-5}}{-2} = y

f1(x)=x52\displaystyle f^{-1}(x)= - \frac{\sqrt{x-5}}{2}


Can someone point out what I did wrong between the steps please?
 
Is there an error in your original statement? The expression "-2y[sup:1iprwrqc]2[/sup:1iprwrqc]+5 is a function of y, not a function of x. A function of x would have an x someplace on the right side. Maybe I'm missing something???
 
spacewater said:
Problem I am assuming actual form is:f(x)=2x2+5\displaystyle f(x) = -2x^2 +5

Steps (switching x & y)

x=2y2+5\displaystyle x=-2y^2+5

x5=2y2\displaystyle x-5 = -2y^2
___________________________________
5x=2y2\displaystyle 5 - x = 2y^2

5x2=y2\displaystyle \frac{5-x}{2} \, = \, y^2

y=5x2\displaystyle y \, = \, \sqrt{\frac{5-x}{2}}

________________________________________
x5=2y\displaystyle \sqrt{x-5}=-2y

x52=2y2\displaystyle \frac{\sqrt{x-5}}{-2} = \frac{-2y}{-2}

x52=y\displaystyle \frac{\sqrt{x-5}}{-2} = y

f1(x)=x52\displaystyle f^{-1}(x)= - \frac{\sqrt{x-5}}{2}


Can someone point out what I did wrong between the steps please?
 
Subhotosh Khan said:
spacewater said:
Problem I am assuming actual form is:f(x)=2x2+5\displaystyle f(x) = -2x^2 +5

Steps (switching x & y)

x=2y2+5\displaystyle x=-2y^2+5

x5=2y2\displaystyle x-5 = -2y^2
___________________________________
5x=2y2\displaystyle 5 - x = 2y^2

5x2=y2\displaystyle \frac{5-x}{2} \, = \, y^2

y=5x2\displaystyle y \, = \, \sqrt{\frac{5-x}{2}}

________________________________________
x5=2y\displaystyle \sqrt{x-5}=-2y

x52=2y2\displaystyle \frac{\sqrt{x-5}}{-2} = \frac{-2y}{-2}

x52=y\displaystyle \frac{\sqrt{x-5}}{-2} = y

f1(x)=x52\displaystyle f^{-1}(x)= - \frac{\sqrt{x-5}}{2}


Can someone point out what I did wrong between the steps please?


The correct answer is f1(x)=2(x5)2\displaystyle f^{-1}(x) =\frac{\sqrt{-2(x-5)}}{2} according to my answer sheet.... is there typo on my answer sheet?
 
y=2x2+5\displaystyle y=-2x^2+5
x=2y2+5\displaystyle x=-2y^2+5
2y2=x5\displaystyle -2y^2=x-5
y2=x52\displaystyle y^2=\frac{x-5}{-2}
y2=5x2\displaystyle y^2=\frac{5-x}{2}
y2=2(5x)4\displaystyle y^2=\frac{2(5-x)}{4}
y=±2(5x)2\displaystyle y=\pm\frac{\sqrt{2(5-x)}}{2}
That's the way I would do it. Now, we need to figure out why we discard the negative sign.
Please note that this answer is a different form of your answer book answer, except for the plus/minus sign.
 
Top