Hi, I am having difficulty with solving these problems using the Chain Rule. I was able to solve them partially but then got stuck. Any help on how to continue or finish them would be great!
Find the derivative of the function:
1. f(x)= ln (x/x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)
f'(x)= ln [x(x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]-1[/sup:36e5yc0i])]
f'(x)= ln[(-x(x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]-2[/sup:36e5yc0i]]*2x
?f'(x)= ln[-2x[sup:36e5yc0i]2[/sup:36e5yc0i](x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]-2[/sup:36e5yc0i]]
Find the second derivative of the function:
2. f(x)= sin x[sup:36e5yc0i]2[/sup:36e5yc0i]
f'(x)= cos x[sup:36e5yc0i]2[/sup:36e5yc0i]*2x
=2x cos x[sup:36e5yc0i]2[/sup:36e5yc0i]
f''(x)= 2x[(2x (-sin x[sup:36e5yc0i]2[/sup:36e5yc0i])+cos x[sup:36e5yc0i]2[/sup:36e5yc0i]*x)]
?f''(x)= 2x[2 cos x[sup:36e5yc0i]2[/sup:36e5yc0i]-2x sin x[sup:36e5yc0i]2[/sup:36e5yc0i]]
Find the derivative of the function:
3. g(t)= t[sup:36e5yc0i]2[/sup:36e5yc0i]2[sup:36e5yc0i]t[/sup:36e5yc0i]
g'(t)= t[sup:36e5yc0i]2[/sup:36e5yc0i](ln 2)2t+2[sup:36e5yc0i]t[/sup:36e5yc0i]*2t
Wasn't sure how to continue on from here.
Find the derivative of the function:
Did not know if I did this one correctly or not.
4. y=log [sub:36e5yc0i]5[/sub:36e5yc0i](x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]1/2[/sup:36e5yc0i]
y'=log [sub:36e5yc0i]5[/sub:36e5yc0i][(1/2(x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]-1/2[/sup:36e5yc0i]]*2x
y'=log [sub:36e5yc0i]5[/sub:36e5yc0i] [x(x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]-1/2[/sup:36e5yc0i])
y'=(x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]1/2[/sup:36e5yc0i]/(ln 5) x
Find the derivative of the function:
1. f(x)= ln (x/x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)
f'(x)= ln [x(x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]-1[/sup:36e5yc0i])]
f'(x)= ln[(-x(x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]-2[/sup:36e5yc0i]]*2x
?f'(x)= ln[-2x[sup:36e5yc0i]2[/sup:36e5yc0i](x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]-2[/sup:36e5yc0i]]
Find the second derivative of the function:
2. f(x)= sin x[sup:36e5yc0i]2[/sup:36e5yc0i]
f'(x)= cos x[sup:36e5yc0i]2[/sup:36e5yc0i]*2x
=2x cos x[sup:36e5yc0i]2[/sup:36e5yc0i]
f''(x)= 2x[(2x (-sin x[sup:36e5yc0i]2[/sup:36e5yc0i])+cos x[sup:36e5yc0i]2[/sup:36e5yc0i]*x)]
?f''(x)= 2x[2 cos x[sup:36e5yc0i]2[/sup:36e5yc0i]-2x sin x[sup:36e5yc0i]2[/sup:36e5yc0i]]
Find the derivative of the function:
3. g(t)= t[sup:36e5yc0i]2[/sup:36e5yc0i]2[sup:36e5yc0i]t[/sup:36e5yc0i]
g'(t)= t[sup:36e5yc0i]2[/sup:36e5yc0i](ln 2)2t+2[sup:36e5yc0i]t[/sup:36e5yc0i]*2t
Wasn't sure how to continue on from here.
Find the derivative of the function:
Did not know if I did this one correctly or not.
4. y=log [sub:36e5yc0i]5[/sub:36e5yc0i](x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]1/2[/sup:36e5yc0i]
y'=log [sub:36e5yc0i]5[/sub:36e5yc0i][(1/2(x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]-1/2[/sup:36e5yc0i]]*2x
y'=log [sub:36e5yc0i]5[/sub:36e5yc0i] [x(x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]-1/2[/sup:36e5yc0i])
y'=(x[sup:36e5yc0i]2[/sup:36e5yc0i]+1)[sup:36e5yc0i]1/2[/sup:36e5yc0i]/(ln 5) x