V = {(x, y, z ) ? R3 : x + y + 2z ? 1, x + y ? 2z ? 1, x ? 0, y ? 0}.
put the volume V in the form of:
\(\displaystyle \int\limits_{...}^{...} \int\limits_{...}^{...} \int\limits_{...}^{...} dxdydz\)
Is the result?:
\(\displaystyle \int\limits_{-1/2}^{0} \int\limits_{0}^{(1+2z)} \int\limits_{0}^{(-y-2z+1)} dxdydz + \int\limits_{0}^{1/2} \int\limits_{0}^{(1-2z)} \int\limits_{0}^{(-y+2z+1)} dxdydz\)
P.S.- Please mods and admins let me know if I'm pushing on the number of posts... :S
put the volume V in the form of:
\(\displaystyle \int\limits_{...}^{...} \int\limits_{...}^{...} \int\limits_{...}^{...} dxdydz\)
Is the result?:
\(\displaystyle \int\limits_{-1/2}^{0} \int\limits_{0}^{(1+2z)} \int\limits_{0}^{(-y-2z+1)} dxdydz + \int\limits_{0}^{1/2} \int\limits_{0}^{(1-2z)} \int\limits_{0}^{(-y+2z+1)} dxdydz\)
P.S.- Please mods and admins let me know if I'm pushing on the number of posts... :S