Find values for K

raven720

New member
Joined
Nov 24, 2009
Messages
5
Find the values for k for which y = x^2 + k is a solution to 2y - xy' = 10

I dont think that it is to hard of a question, but for what ever reason i cant remember how to do this, any help?
 
\(\displaystyle y \ = \ x^{2}+k\)

\(\displaystyle y \ ' \ = \ 2x\)

\(\displaystyle 2(x^{2}+k)-x(2x) \ = \ 10\)

\(\displaystyle 2x^{2}+2k-2x^{2} \ = \ 10\)

\(\displaystyle k \ = \ 5\)
 
Hello, raven720!

\(\displaystyle \text{Find the values of }k\text{ for which }y = x^2 + k\text{ is a solution to: }\: 2y - xy' \:=\: 10\;\;[1]\)

\(\displaystyle \text{We have: }\;\begin{array}{c} y \:=\:x^2+k \\ y' \:=\:2x \end{array}\)

\(\displaystyle \text{Substitute into [1]: }\;2\overbrace{(x^2+k)}^{y} - x\overbrace{(2x)}^{y'} \:=\:10 \quad\Rightarrow\quad 2x^2 + 2k - 2x^2 \:=\:10\)

. . . . . . . . . \(\displaystyle 2k \:=\:10 \quad\Rightarrow\quad \boxed{k \:=\:5}\)

 
Top