Find values for K

raven720

New member
Joined
Nov 24, 2009
Messages
5
Find the values for k for which y = x^2 + k is a solution to 2y - xy' = 10

I dont think that it is to hard of a question, but for what ever reason i cant remember how to do this, any help?
 
y = x2+k\displaystyle y \ = \ x^{2}+k

y  = 2x\displaystyle y \ ' \ = \ 2x

2(x2+k)x(2x) = 10\displaystyle 2(x^{2}+k)-x(2x) \ = \ 10

2x2+2k2x2 = 10\displaystyle 2x^{2}+2k-2x^{2} \ = \ 10

k = 5\displaystyle k \ = \ 5
 
Hello, raven720!

Find the values of k for which y=x2+k is a solution to: 2yxy=10    [1]\displaystyle \text{Find the values of }k\text{ for which }y = x^2 + k\text{ is a solution to: }\: 2y - xy' \:=\: 10\;\;[1]

We have:   y=x2+ky=2x\displaystyle \text{We have: }\;\begin{array}{c} y \:=\:x^2+k \\ y' \:=\:2x \end{array}

Substitute into [1]:   2(x2+k)yx(2x)y=102x2+2k2x2=10\displaystyle \text{Substitute into [1]: }\;2\overbrace{(x^2+k)}^{y} - x\overbrace{(2x)}^{y'} \:=\:10 \quad\Rightarrow\quad 2x^2 + 2k - 2x^2 \:=\:10

. . . . . . . . . 2k=10k=5\displaystyle 2k \:=\:10 \quad\Rightarrow\quad \boxed{k \:=\:5}

 
Top