f(x) = 3x[sup:1kew8n1k]5[/sup:1kew8n1k] - 5x[sup:1kew8n1k]3[/sup:1kew8n1k]
f'(x) = 15x[sup:1kew8n1k]4[/sup:1kew8n1k] - 15x[sup:1kew8n1k]2[/sup:1kew8n1k]
15x[sup:1kew8n1k]2[/sup:1kew8n1k](x[sup:1kew8n1k]2[/sup:1kew8n1k] - 1) = 0
x = 0, ±1
(0, 0) f(1) = 3(1)[sup:1kew8n1k]5[/sup:1kew8n1k] - 5(1)[sup:1kew8n1k]3[/sup:1kew8n1k]
(1, -2) -2
(1, 2) f(-1) = 3(-1) - 5(-1)
2
f(x) = 9x[sup:1kew8n1k]4[/sup:1kew8n1k] + 4x[sup:1kew8n1k]3[/sup:1kew8n1k] - 36x[sup:1kew8n1k]2[/sup:1kew8n1k] - 24x
f'(x) = 36x[sup:1kew8n1k]3[/sup:1kew8n1k] + 12x[sup:1kew8n1k]2[/sup:1kew8n1k] - 72x - 24
0 = 12x[sup:1kew8n1k]2[/sup:1kew8n1k](3x + 1) - 24(3x + 1)
[stuff scratched out]
2 = x[sup:1kew8n1k]2[/sup:1kew8n1k]
x = ± sqrt[2]
f(x) = sqrt[x] => y = x[sup:1kew8n1k]1/2[/sup:1kew8n1k] find values of x when
y' = 1/(2x[sup:1kew8n1k]1/2[/sup:1kew8n1k]) of x when
(1/4, 1/2) slope = 1
1 = 1/(2x[sup:1kew8n1k]1/2[/sup:1kew8n1k])
1 = 2x[sup:1kew8n1k]1/2[/sup:1kew8n1k]
x[sup:1kew8n1k]1/2[/sup:1kew8n1k] = 1/2 x = 1/4
[next line not visible]